数学第24章 圆综合与测试精练
展开
这是一份数学第24章 圆综合与测试精练,共28页。
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,AB,CD是⊙O的弦,且,若,则的度数为( )
A.30°B.40°C.45°D.60°
2、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的( )
A.①②③B.①②④C.①③④D.②③④
3、下列图形中,是中心对称图形,但不是轴对称图形的是( )
A.B.C.D.
4、下列汽车标志中既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
5、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是( )
A.1B.C.D.2
6、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )
A.36 cmB.27 cmC.24 cmD.15 cm
7、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )
A.相交B.相切
C.相离D.不确定
8、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )
A.3B.4C.5D.6
9、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为( )
A.B.C.D.8
10、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、AB是的直径,点C在上,,点P在线段OB上运动.设,则x的取值范围是________.
2、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.
3、已知一个扇形的半径是1,圆心角是120°,则这个扇形的面积是___________.
4、如图,AB是半圆O的直径,点D在半圆O上,,,C是弧BD上的一个动点,连接AC,过D点作于H.连接BH,则在点C移动的过程中,线段BH的最小值是______.
5、如图,已知正方形ABCD的边长为6,E为CD边上一点,将绕点A旋转至,连接,若,则的长等于______.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)
(1)画出关于原点对称的图形,并写出点的坐标;
(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;
(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)
2、如图,已知AB是⊙O的直径,,连接OC,弦,直线CD交BA的延长线于点.
(1)求证:直线CD是⊙O的切线;
(2)若,,求OC的长.
3、如图,在⊙O中,点E是弦CD的中点,过点O,E作直径AB(AE>BE),连接BD,过点C作CFBD交AB于点G,交⊙O于点F,连接AF.求证:AG=AF.
4、如图,已知等边内接于⊙O,D为的中点,连接DB,DC,过点C作AB的平行线,交BD的延长线于点E.
(1)求证:CE是⊙O的切线;
(2)若AB的长为6,求CE的长.
5、如图,点A是外一点,过点A作出的一条切线.(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹)
-参考答案-
一、单选题
1、B
【分析】
由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.
【详解】
解:∵,
∴,
∵,
∴,
故选:B.
【点睛】
题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.
2、B
【分析】
根据,,点D、E分别是AB、AC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断④点P运动的路径长为正确即可.
【详解】
解:∵,,点D、E分别是AB、AC的中点.
∴∠DAE=90°,AD=AE=,
∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
,
∴△DAB≌△EAC(SAS),
故①△AEC≌△ADB正确;
作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,
∵△AEC≌△ADB,
∴∠DBA=∠ECA,
∴∠PBA+∠P=∠ECP+∠BAC,
∴∠P=∠BAC=90°,
∵CP为⊙A的切线,
∴AE⊥CP,
∴∠DPE=∠PEA=∠DAE=90°,
∴四边形DAEP为矩形,
∵AD=AE,
∴四边形DAEP为正方形,
∴PE=AE=3,
在Rt△AEC中,CE=,
∴CP最大=PE+EC=3+,
故②CP存在最大值为正确;
∵△AEC≌△ADB,
∴BD=CE=,
在Rt△BPC中,BP最小=,
BP最短=BD-PD=-3,
故③BP存在最小值为不正确;
取BC中点为O,连结AO,OP,
∵AB=AC=6,∠BAC=90°,
∴BP=CO=AO=,
当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,
∴∠ACE=30°,
∴∠AOP=2∠ACE=60°,
当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,
∴∠ABD=30°,
∴∠AOP′=2∠ABD=60°,
∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,
∵∠POP=∠POA+∠AOP′=60°+60°=120°,
∴L.
故④点P运动的路径长为正确;
正确的是①②④.
故选B.
【点睛】
本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.
3、B
【分析】
根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
【详解】
解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
B、是中心对称图形但不是轴对称图形,故符合题意;
C、既不是轴对称图形也不是中心对称图形,故不符合题意;
D、是轴对称图形但不是中心对称图形,故不符合题意;
故选B.
【点睛】
本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
4、C
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项符合题意;
D、不是轴对称图形,是中心对称图形,故此选项不符合题意;
故选:C.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、B
【分析】
利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CE⊥AB于E,利用,求出BE,根据垂径定理求出BD即可得到答案.
【详解】
解: 在Rt中,,
∴BC=3,,
连接CD,过点C作CE⊥AB于E,
∵,
∴,
解得,
∵CB=CD,CE⊥AB,
∴,
∴,
故选:B.
【点睛】
此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.
6、C
【分析】
连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可.
【详解】
解:连接,过点作于点,交于点,如图所示:
则,
的直径为,
,
在中,,
,
即水的最大深度为,
故选:C.
【点睛】
本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.
7、B
【分析】
根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
【详解】
解:连接,
,点O为AB中点.
CO为⊙C的半径,
是的切线,
⊙C 与AB的位置关系是相切
故选B
【点睛】
本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
8、A
【分析】
先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
【详解】
由旋转的性质得:,
,
是等边三角形,
,
,
.
故选:A.
【点睛】
本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
9、A
【分析】
过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.
【详解】
解:如图,过点作于点,连接,
AB是的直径,,,
,
在中,
故选A
【点睛】
本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.
10、D
【分析】
连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.
【详解】
解:连接CD,如图所示:
∵点D是AB的中点,,,
∴,
∵,
∴,
在Rt△ACB中,由勾股定理可得;
故选D.
【点睛】
本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.
二、填空题
1、
【分析】
分别求出当点P与点O重合时,当点P与点B重合时x的值,即可得到取值范围.
【详解】
解:当点P与点O重合时,
∵OA=OC,
∴,即;
当点P与点B重合时,
∵AB是的直径,
∴,
∴x的取值范围是.
【点睛】
此题考查了同圆中半径相等的性质,直径所对的圆周角是直角的性质,正确理解点P的运动位置是解题的关键.
2、
【分析】
利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案.
【详解】
解:由旋转得,,=∠BAC=30°,
∵∠ABC=90°,∠BAC=30°,BC=1,
∴AC=2BC=2,AB=,,
∴阴影部分的面积=
=,
故答案为:.
.
【点睛】
此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.
3、
【分析】
根据圆心角为的扇形面积是进行解答即可得.
【详解】
解:这个扇形的面积.
故答案是:.
【点睛】
本题考查了扇形的面积,解题的关键是掌握扇形的面积公式.
4、##
【分析】
连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、、三点共线时,最小;求出,在中,,所以,即为所求.
【详解】
解:连接,取的中点,连接,
,
点在以为圆心,为半径的圆上,
当、、三点共线时,最小,
是直径,
,
,,
,,
在中,,
,
故答案为:.
【点睛】
本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.
5、4
【分析】
在正方形ABCD中,BE′=DE=2,所以在直角三角形E′CE中,E′C=8,CE=4,利用勾股定理求得EE′的长即可.
【详解】
解:在正方形ABCD中,∠C=90°,
由旋转得,BE′=DE=2,
∴E′C=8,CE=4,
∴在直角三角形E′CE中,
EE′===4.
故答案为4.
【点睛】
本题考查了正方形的性质、旋转的性质与勾股定理的知识,正确的利用旋转和正方形的性质得出直角三角形边长并正确的应用勾股定理是解题的关键.
三、解答题
1、
(1)见解析,;
(2)见解析,
(3)绕点O顺时针时针旋转
【分析】
(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;
(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;
(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.
(1)
解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:
(2)
解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:
(3)
解:根据题意得:绕点O顺时针时针旋转后可直接得到.
【点睛】
本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.
2、(1)见解析;(2)
【分析】
(1)连接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,从而可证得△OBC≌△ODC,即可证得CD是⊙O的切线;
(2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,
从而可得,则可求得OC的长.
【详解】
(1)连接OD,
∵,
∴.
又∵,
∴,
∴.
在与中,
∴,
∴.
又∵,
∴,
∴是的切线.
(2)∵,
∴,
∴,
∴.
又∵,
∴,
∴,
∴,
∴,
∴,
∴OC=15
【点睛】
本题是圆的综合,它考查了切线的判定,三角形全等的判定与性质,相似三角形的判定与性质等知识;证明圆的切线时,往往作半径.
3、见解析
【分析】
由题意易得AB⊥CD,,则有,由平行线的性质可得,然后可得,进而问题可求证.
【详解】
证明:∵AB为⊙O的直径,点E是弦CD的中点,
∴AB⊥CD,
∴,
∴,
∵CF∥BD,
∴,
∴,
∴.
【点睛】
本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周角定理是解题的关键.
4、(1)见解析;(2)3
【分析】
(1)由题意连接OC,OB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;
(2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.
【详解】
解:(1)证明:如图连接OC、OB.
∵是等边三角形
∴
∵
∴
又 ∵
∴
∴
∴
∴与⊙O相切;
(2)∵四边形ABCD是⊙O的内接四边形,
∴
∴
∵D为的中点,
∴
∴
∵
∴
∴
【点睛】
本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.
5、见解析
【分析】
先作线段的垂直平分线.确定的中点,再以中点为圆心,一半为半径作圆交于点,然后作直线,则根据圆周角定理可得为所求.
【详解】
如图,直线AB就是所求作的,
(作法不唯一,作出一条即可,需要有作图痕迹)
【点睛】
本题考查了作图复杂作图,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题,共27页。试卷主要包含了如图,是的直径,,在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。
这是一份2020-2021学年第24章 圆综合与测试同步训练题,共33页。
这是一份沪科版九年级下册第24章 圆综合与测试课后练习题,共29页。试卷主要包含了下列语句判断正确的是,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。