初中数学沪科版九年级下册第24章 圆综合与测试课堂检测
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课堂检测,共33页。
沪科版九年级数学下册第24章圆月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).
A.20° B.25° C.30° D.40°
2、下列图形中,是中心对称图形的是( )
A. B.
C. D.
3、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )
A.50° B.70° C.110° D.120°
4、下列四个图案中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
5、如图,CD是的高,按以下步骤作图:
(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.
(2)作直线GH交AB于点E.
(3)在直线GH上截取.
(4)以点F为圆心,AF长为半径画圆交CD于点P.
则下列说法错误的是( )
A. B. C. D.
6、如图,,,,都是上的点,,垂足为,若,则的度数为( )
A. B. C. D.
7、在下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
8、如图,A,B,C是正方形网格中的三个格点,则是( )
A.优弧 B.劣弧 C.半圆 D.无法判断
9、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是( )
A.80° B.70° C.60° D.50°
10、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为( )
A.8 B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、两直角边分别为6、8,那么的内接圆的半径为____________.
2、如图,以面积为20cm2的Rt△ABC的斜边AB为直径作⊙O,∠ACB的平分线交⊙O于点D,若,则AC+BC=_____.
3、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.
4、如图,已知正方形ABCD的边长为6,E为CD边上一点,将绕点A旋转至,连接,若,则的长等于______.
5、如图,将△ABC绕点A顺时针旋转得到△ADE,若∠DAE=110°,∠B=40°,则∠C的度数为________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,AB是⊙O的直径,点D,E在⊙O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C.
(1)求证:CD是⊙O的切线.
(2)若,求阴影部分的面积.
2、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为3,求BC的长.
3、如图AB是⊙O的直径,弦CD⊥AB于点E,作∠FAC=∠BAC,过点C作CF⊥AF于点F.
(1)求证:CF是⊙O的切线;
(2)若sin∠CAB=,求=_______.(直接写出答案)
4、将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.
(1)如图,若点A,E,D第一次在同一直线上,BG与CE交于点H,连接BE.
①求证:BE平分∠AEC.
②取BC的中点P,连接PH,求证:PHCG.
③若BC=2AB=2,求BG的长.
(2)若点A,E,D第二次在同一直线上,BC=2AB=4,直接写出点D到BG的距离.
5、在中,,,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G.
(1)如图,当点E在线段CD上时,
①依题意补全图形,并直接写出BC与CF的位置关系;
②求证:点G为BF的中点.
(2)直接写出AE,BE,AG之间的数量关系.
-参考答案-
一、单选题
1、B
【分析】
连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
【详解】
解:连接OA,如图,
∵PA是⊙O的切线,
∴OA⊥AP,
∴∠PAO=90°,
∵∠P=40°,
∴∠AOP=50°,
∵OA=OB,
∴∠B=∠OAB,
∵∠AOP=∠B+∠OAB,
∴∠B=∠AOP=×50°=25°.
故选:B.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
2、C
【分析】
根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.
【详解】
A、不是中心对称图形,不符合题意;
B、不是中心对称图形,不符合题意;
C、是中心对称图形,符合题意;
D、不是中心对称图形,不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.
3、B
【分析】
根据旋转可得,,得.
【详解】
解:,,
,
将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
,,
.
故选:B.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
4、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项不符合题意;
D、不是轴对称图形,是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、C
【分析】
连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.
【详解】
解:连接AF、BF,由作法可知,FE垂直平分AB,
∴,故A正确;
∵CD是的高,
∴,故B正确;
∵,,
∴,故C错误;
∵,
∴∠AFE=45°,
同理可得∠BFE=45°,
∴∠AFB=90°,
,故D正确;
故选:C.
【点睛】
本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.
6、B
【分析】
连接OC.根据确定,,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出.
【详解】
解:如下图所示,连接OC.
∵,
∴,.
∴.
∵.
∴.
∴
∵和分别是所对的圆周角和圆心角,
∴.
故选:B.
【点睛】
本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.
7、B
【分析】
根据中心对称图形与轴对称图形的定义解答即可.
【详解】
解:A.是轴对称图形,不是中心对称图形,不符合题意;
B既是中心对称图形又是轴对称图形,符合题意;
C. 是轴对称图形,不是中心对称图形,不符合题意;
D. 既不是中心对称图形,也不是轴对称图形,不符合题意.
故选B.
【点睛】
本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.
8、B
【分析】
根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.
【详解】
解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.
故选:B.
【点睛】
本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.
9、A
【分析】
根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
【详解】
证明:∵绕点C逆时针旋转得到,
∴,,
∴∠ADC=∠DAC,
∵点A,D,E在同一条直线上,
∴,
∴∠DAC=50°,
∴∠BAD=∠BAC-∠DAC=80°
故选A.
【点睛】
本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
10、C
【分析】
如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.
【详解】
解:如图所示,连接CP,
∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,
∴∠CPO=90°,∠COP=45°,
∴∠PCO=∠COP=45°,
∴CP=OP=4,
∴,
故选C.
【点睛】
本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.
二、填空题
1、5
【分析】
直角三角形外接圆的直径是斜边的长.
【详解】
解:由勾股定理得:AB==10,
∵∠ACB=90°,
∴AB是⊙O的直径,
∴这个三角形的外接圆直径是10,
∴这个三角形的外接圆半径长为5,
故答案为:5.
【点睛】
本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.
2、##
【分析】
连接,延长交于点,连接,先根据圆周角定理和圆的性质可得,再根据特殊角的三角函数值可得,从而可得,作,交于点,从而可得,然后在中,利用直角三角形的性质和勾股定理可得,设,从而可得,利用直角三角形的面积公式可求出的值,由此即可得.
【详解】
解:如图,连接,延长交于点,连接,
都是的直径,
,
,
,
在中,,
,
平分,且,
,
,
,
,
如图,作,交于点,
,
在中,,
,
设,则,
,
,
解得或(不符题意,舍去),
则,
故答案为:.
【点睛】
本题考查了特殊角的三角函数值、圆周角定理、含角的直角三角形的性质等知识点,通过作辅助线,构造直角三角形和等腰三角形是解题关键.
3、
【分析】
根据旋转找出规律后再确定坐标.
【详解】
∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,
∴每6次翻转为一个循环组循环,
∵,
∴经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,
∵,
∴,
∴翻转前进的距离为:,
如图,过点B作BG⊥x于G,
则∠BAG=60°,
∴,
,
∴,
∴点B的坐标为.
故答案为:.
【点睛】
题考查旋转的性质与正多边形,由题意找出规律是解题的关键.
4、4
【分析】
在正方形ABCD中,BE′=DE=2,所以在直角三角形E′CE中,E′C=8,CE=4,利用勾股定理求得EE′的长即可.
【详解】
解:在正方形ABCD中,∠C=90°,
由旋转得,BE′=DE=2,
∴E′C=8,CE=4,
∴在直角三角形E′CE中,
EE′===4.
故答案为4.
【点睛】
本题考查了正方形的性质、旋转的性质与勾股定理的知识,正确的利用旋转和正方形的性质得出直角三角形边长并正确的应用勾股定理是解题的关键.
5、
【分析】
先根据旋转的性质求得,再运用三角形内角和定理求解即可.
【详解】
解:将△ABC绕点A顺时针旋转得到△ADE,∠DAE=110°
,
,
.
故答案是:30°.
【点睛】
本题主要考查了旋转的性质、三角形内角和定理等知识点,灵活运用旋转的性质是解答本题的关键.
三、解答题
1、(1)见详解;(2)
【分析】
(1)连接OD,由题意易得,则有△ODB是等边三角形,然后可得△AEO也为等边三角形,进而可得OD∥AC,最后问题可求证;
(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圆O的半径,进而可得扇形OED和△OED的面积,则有弓形ED的面积,最后问题可求解.
【详解】
(1)证明:连接OD,如图所示:
∵四边形BDEO是平行四边形,
∴,
∴△ODB是等边三角形,
∴∠OBD=∠BOD=60°,
∴∠AOE=∠OBD=60°,
∵OE=OA,
∴△AEO也为等边三角形,
∴∠EAO=∠DOB=60°,
∴AE∥OD,
∴∠ODC+∠C=180°,
∵CD⊥AE,
∴∠C=90°,
∴∠ODC=90°,
∵OD是圆O的半径,
∴CD是⊙O的切线.
(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,
∴∠EAO=∠CED=60°,
∵∠AOE+∠EOD+∠BOD=180°,
∴∠EOD=60°,
∴△DEO为等边三角形,
∴ED=OE=AE,
∵CD⊥AE,∠CED=60°,
∴∠CDE=30°,
∴,
∵,
∴,
∴,
设△OED的高为h,
∴,
∴,
∴.
【点睛】
本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键.
2、
(1)见解析
(2)
【分析】
(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;
(2)证明,得出对应边成比例,即可求出的长.
(1)
证明:连接,如图所示:
是的直径,
,
,
,
,
,
,
即,
是的切线;
(2)
解:的半径为,
,,
,
,
,
,
,
又,
,
,
即,
.
【点睛】
本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.
3、
(1)见解析
(2)
【分析】
(1)如图,连接OC,根据等腰三角形的性质可得∠CAB=∠ACO,即可得出∠FAC=∠ACO,可得AF//OC,根据平行线的性质可得∠AFC+∠OCF=180°,根据CF⊥AF可得∠OCF=90°,即可得出CF是⊙O的切线;
(2)利用AAS可证明△AFC≌△AEC,可得S△AFC=S△AEC,根据垂径定理可得CE=DE,可得S△BCD=2S△BCE,根据AB是直径可得∠ACB=90°,根据角的和差关系可得∠BCE=∠CAB,根据正弦的定义可得,可得BE=,AB=,进而可得AE=,根据三角形面积公式即可得答案.
(1)
(1)如图,连接OC,
∵OA=OC,
∴∠CAB=∠ACO,
∵∠FAC=∠BAC,
∴∠FAC=∠ACO,
∴AF//OC,
∴∠AFC+∠OCF=180°,
∵CF⊥AF,
∴∠OCF=90°,即OC⊥CF,
∴CF是⊙O的切线.
(2)
在△AFC和△AEC中,,
∴△AFC≌△AEC,
∴S△AFC=S△AEC,
∵AB是⊙O的直径,CD⊥AB,
∴CE=DE,
∴S△BCD=2S△BCE,
∵∠BCE+∠CBA=90°,∠CAB+∠CBA=90°,
∴∠BCE=∠CBA,
∵sin∠CAB=,
∴sin∠CAB=sin∠BCE=,
∴BE=,AB=,
∴AE=,
∴====.
故答案为:
【点睛】
本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键.
4、
(1)①见解析;②见解析;③
(2)
【分析】
(1)①根据旋转的性质得到,求得,根据平行线的性质得到,于是得到结论;
②如图1,过点作的垂线,根据角平分线的性质得到,求得,根据全等三角形的性质得到,根据三角形的中位线定理即可得到结论;
③如图2,过点作的垂线,解直角三角形即可得到结论.
(2)如图3,连接,,过作交的延长线于,交的延长线于,根据旋转的性质得到,,解直角三角形得到,,根据三角形的面积公式即可得到结论.
(1)
解:①证明:矩形绕着点按顺时针方向旋转得到矩形,
,
,
又,
,
,
平分;
②证明:如图1,过点作的垂线,
平分,,,
,
,
,,,
,
,
即点是中点,
又点是中点,
;
③解:如图2,过点作的垂线,
,
,
,
,
,
,
,,
;
(2)
解:如图3,连接,,过作交的延长线于,交的延长线于,
,
,
将矩形绕着点按顺时针方向旋转得到矩形,
,,
点,,第二次在同一直线上,
,
,
,
,
,,
,,
,,
.
【点睛】
本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.
5、(1)①BC⊥CF;证明见详解;②见详解;(2)2AE2=4AG2+BE2.证明见详解.
【分析】
(1)①如图所示,BC⊥CF.根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,∠EAF=90°,可证△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;
②根据AD⊥BC,BC⊥CF.可得AD∥CF,可证△BDG∽△BCF,可得,得出即可;
(2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分∠BAC,可得∠BAD=∠CAD=,可证△BAG∽△BHF,得出HF=2AG,再证△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.
【详解】
解:(1)①如图所示,BC⊥CF.
∵将线段AE逆时针旋转90°得到线段AF,
∴AE=AF,∠EAF=90°,
∴∠EAC+∠CAF=90°,
∵,,
∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
,
∴△BAE≌△CAF(SAS),
∴∠ABE=∠ACF=45°,
∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
∴BC⊥CF;
②∵AD⊥BC,BC⊥CF.
∴AD∥CF,
∴∠BDG=∠BCF=90°,∠BGD=∠BFC,
∴△BDG∽△BCF,
∴,
∵,AD⊥BC,
∴BD=DC=,
∴,
∴,
∴,
∴BG=GF;
(2)2AE2=4AG2+BE2.延长BA交CF延长线于H,
∵AD⊥BC,AB=AC,
∴AD平分∠BAC,
∴∠BAD=∠CAD=,
∵BG=GF,AG∥HF,
∴∠BAG=∠H=45°,∠AGB=∠HFB,
∴△BAG∽△BHF,
∴,
∴HF=2AG,
∵∠ACE=45°,
∴∠ACE =∠H,
∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,
∴∠EAC=∠FAH,
在△AEC和△AFH中,
,
∴△AEC≌△AFH(AAS),
∴EC=FH=2AG,
在Rt△AEF中,根据勾股定理,
在Rt△ECF中,即.
【点睛】
本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键.
相关试卷
这是一份2020-2021学年第24章 圆综合与测试同步训练题,共33页。
这是一份数学第24章 圆综合与测试精练,共28页。
这是一份沪科版九年级下册第24章 圆综合与测试课后练习题,共29页。试卷主要包含了下列语句判断正确的是,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。