初中沪科版第24章 圆综合与测试练习题
展开
这是一份初中沪科版第24章 圆综合与测试练习题,共36页。试卷主要包含了等边三角形等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )
A. B. C. D.
2、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是( )
A. B.1 C.2 D.
3、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是( )
A.1cm B.2cm C.2cm D.4cm
4、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为( )
A.64° B.52° C.42° D.36°
5、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
6、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )
A.2个 B.3个 C.4个 D.5个
7、下列图形中,既是中心对称图形又是抽对称图形的是( )
A. B. C. D.
8、下列图形中,可以看作是中心对称图形的是( )
A. B.
C. D.
9、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为( )
A.22.5° B.45° C.90° D.67.5°
10、下列四个图案中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.
2、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π)
3、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC,若弦BC的长度为,则∠BAC=________度.
4、如图,在矩形中,,,F为中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90°得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:①当时,;②点E到边的距离为m;③直线一定经过点;④的最小值为.其中结论正确的是______.(填序号即可)
5、如图,已知扇形的圆心角为60°,半径为2,则图中弓形(阴影部分)的面积为______.
三、解答题(5小题,每小题10分,共计50分)
1、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容.
圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.
由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径.(如图)
(推论证明)已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°.
求证:线段AB是⊙O的直径.
请你结合图①写出推论1的证明过程.
(深入探究)如图②,点A,B,C,D均在半径为1的⊙O上,若∠ACB=90°,∠ACD=60°.则线段AD的长为 .
(拓展应用)如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE. 若AB=,则DE的长为 .
2、如图,内接于,BC是的直径,D是AC延长线上一点.
(1)请用尺规完成基本作图:作出的角平分线交于点P.(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,过点P作,垂足为E.则PE与有怎样的位置关系?请说明理由.
3、在平面直角坐标系xOy中,旋转角满足,对图形M与图形N给出如下定义:将图形M绕原点逆时针旋转得到图形.P为图形上任意一点,Q为图形N上的任意一点,称PQ长度的最小值为图形M与图形N的“转后距”.已知点,点,点.
(1)当时,记线段OA为图形M.
①画出图形;
②若点C为图形N,则“转后距”为______;
③若线段AC为图形N,求“转后距”;
(2)已知点,点,记线段AB为图形M,线段PQ为图形N,对任意旋转角,“转后距”大于1,直接写出t的取值范围.
4、如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限.将正方形ABCD绕点A按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O三点在一条直线上.记点D1的坐标是(m,n),C1的坐标是(p,q).
(1)设∠DAD1=30°,n=2,求证:OD1的长度;
(2)若∠DAD1<90°,m,n满足m+n=﹣4,p2+q2=25,求p+q的值.
5、在等边中,将线段AB绕点A顺时针旋转得到线段AD.
(1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的α的取值范围;
(2)在(1)的条件下连接BD,交CA的延长线于点F.
①依题意补全图形;②用等式表示线段AE,AF,CE之间的数量关系,并证明.
-参考答案-
一、单选题
1、C
【分析】
过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.
【详解】
解:如图,过点A作AC⊥x轴于点C,
设 ,则 ,
∵ ,,
∴,
∵, ,
∴ ,
解得: ,
∴ ,
∴ ,
∴点 ,
∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,
∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.
故选:C
【点睛】
本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.
2、A
【分析】
取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
【详解】
解:如图,取BC的中点G,连接MG,
∵旋转角为60°,
∴∠MBH+∠HBN=60°,
又∵∠MBH+∠MBC=∠ABC=60°,
∴∠HBN=∠GBM,
∵CH是等边△ABC的对称轴,
∴HB=AB,
∴HB=BG,
又∵MB旋转到BN,
∴BM=BN,
在△MBG和△NBH中,
,
∴△MBG≌△NBH(SAS),
∴MG=NH,
根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,
∴MG=CG=,
∴HN=,
故选A.
【点睛】
本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
3、D
【分析】
根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.
【详解】
解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于
设半径为r,即OA=OB=AB=r,
OM=OA•sin∠OAB=,
∵圆O的内接正六边形的面积为(cm2),
∴△AOB的面积为(cm2),
即,
,
解得r=4,
故选:D.
【点睛】
本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.
4、B
【分析】
先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.
【详解】
解:∵CC′∥AB,
∴∠ACC′=∠CAB=64°
∵△ABC在平面内绕点A旋转到△AB′C′的位置,
∴∠CAC′等于旋转角,AC=AC′,
∴∠ACC′=∠AC′C=64°,
∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,
∴旋转角为52°.
故选:B.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
5、C
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.是轴对称图形,不是中心对称图形,故此选项不合题意;
B.不是轴对称图形,是中心对称图形,故此选项不符合题意;
C.是轴对称图形,也是中心对称图形,故此选项合题意;
D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
6、A
【分析】
根据轴对称图形与中心对称图形的概念进行判断.
【详解】
解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;
等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
共2个既是轴对称图形又是中心对称图形.
故选:A.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
7、B
【详解】
解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;
.既是轴对称图形,也是中心对称图形,故此选项符合题意;
.是轴对称图形,不是中心对称图形,故此选项不符合题意;
.不是轴对称图形,是中心对称图形,故此选项不符合题意;
故选:B.
【点睛】
本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
8、C
【分析】
根据中心对称图形的定义进行逐一判断即可.
【详解】
解:A、不是中心对称图形,故此选项不符合题意;
B、不是中心对称图形,故此选项不符合题意;
C、是中心对称图形,故此选项符合题意;
D、不是中心对称图形,故此选项不符合题意;
故选C.
【点睛】
本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
9、B
【分析】
根据同弧所对的圆周角是圆心角的一半即可得.
【详解】
解:∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.
10、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项不符合题意;
D、不是轴对称图形,是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
二、填空题
1、
【分析】
过O作OC垂直于弦AB,利用垂径定理得到C为AB的中点,然后由OA=OB,且∠AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由C为AB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OA及AC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离.
【详解】
解:过O作OC⊥AB,则有C为AB的中点,
∵OA=OB,∠AOB=90°,AB=a,
∴根据勾股定理得: OA2+OB2=AB,
∴OA=,
在Rt△AOC中,OA=,AC=AB=,
根据勾股定理得:OC==.
故答案为:;
【点睛】
此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.
2、
【分析】
先求出A、B、C坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可.
【详解】
过C作CD⊥OA于D
∵一次函数的图象与x轴交于点A,与y轴交于点B,
∴当时,,B点坐标为(0,1)
当时,,A点坐标为
∴
∵作的外接圆,
∴线段AB中点C的坐标为,
∴三角形BOC是等边三角形
∴
∵C的坐标为
∴
∴
故答案为:
【点睛】
本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.
3、60
【分析】
在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.
【详解】
解:如图作OE⊥BC于E.
∵OE⊥BC,
∴BE=EC=,∠BOE=∠COE,
∴OE=1,
∴OB=2OE,
∴∠OBE=30°,
∴∠BOE=∠COE=60°,
∴∠BOC=120°,
∴∠BAC=60°,
故答案为:60.
【点睛】
本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
4、②③④
【分析】
①当在点的右边时,得出即可判断;
②证明出即可判断;
③根据为等腰直角三角形,得出都是等腰直角三角形,得到即可判断;
④当时,有最小值,计算即可.
【详解】
解:,
为等腰直角三角形,
,
当在点的左边时,
,
当在点的右边时,
,
故①错误;
过点作,
在和中,
根据旋转的性质得:,
,
,
,
,
故②正确;
由①中得知为等腰直角三角形,
,
也是等腰直角三角形,
过点,
不管P在上怎么运动,
得到都是等腰直角三角形,
,
即直线一定经过点,
故③正确;
是等腰直角三角形,
当时,有最小值,
,
为等腰直角三角形,
,
,
由勾股定理:
,
,
故④正确;
故答案是:②③④.
【点睛】
本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理.
5、
【分析】
根据弓形的面积=扇形的面积-三角形的面积求解即可.
【详解】
解:如图,AC⊥OB,
∵圆心角为60°,OA=OB,
∴△OAB是等边三角形,
∴OC=OB=1,
∴AC=,
∴S△OAB=OB×AC=×2×=,
∵S扇形OAB==,
∴弓形(阴影部分)的面积= S扇形OAB- S△OAB=,
故答案为:.
【点睛】
本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键.
三、解答题
1、【推论证明】见解析;【深入探究】;【拓展应用】.
【分析】
推论证明:根据圆周角定理求出,即可证明出线段AB是⊙O的直径;
深入探究:连接AB,首先根据∠ACB=90°得出AB是⊙O的直径,然后求出,然后根据同弧所对的圆周角相等得到,然后根据30°角直角三角形的性质求出BD的长度,最后根据勾股定理即可求出AD的长度;
拓展应用:连接AE,作CF⊥DE交DE于点F,首先根据等边三角形三线合一的性质求出,然后证明出A,E,C,D四点共圆,然后根据同弧或等弧所对的圆周角相等求出,,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.
【详解】
解:推论证明:∵
∴,
∴A,B,O三点共线,
又∵点O是圆心,
∴AB是⊙O的直径;
深入探究:如图所示,连接AB,
∵∠ACB=90°
∴AB是⊙O的直径
∴
∵∠ACD=60°
∴
∵
∴
∴在中,
∴;
拓展应用:如图所示,连接AE,作CF⊥DE交DE于点F,
∵△ABC是等边三角形,点E是BC的中点
∴,
又∵以AC为底边在三角形ABC外作等腰直角三角形ACD
∴,
∴点A,E,C,D四点都在以AC为直径的圆上,
∵
∴
∵CF⊥DE
∴是等腰直角三角形
∴,
∴
∵
∴,解得:
∴
∵
∴
∴在中,
∴
∴.
【点睛】
此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.
2、
(1)作图见解析
(2)是的切线,理由见解析
【分析】
(1)如图1所示,以点为圆心,大于为半径画弧,交于点,交于点;分别以点为圆心,大于的长度为半径画弧,交点为,连接即为角平分线,与的交点即为点.
(2)如图2所示,连接,由题意可知,,,,;在四边形中,,,求出,得出,由于是半径,故有是的切线.
(1)
解:如图1所示
(2)
解:是的切线.
如图2所示,连接
由题意可知,,
,,
在四边形中
∵
∴
∴
又∵是半径
∴是的切线
【点睛】
本题考查了角平分线的画法与性质,切线的判定,圆周角等知识点.解题的关键在于将知识综合灵活运用.
3、(1)①OA′,图形见详解;②2;③ “转后距”为;(2)t的取值范围为t<-5或0<t<2或.
【分析】
(1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′.
②∵点C为图形N,求出OC=2最短距离;
③过点O作OF⊥AC于F,先证△OAC为等边三角形,OF⊥AC,根据勾股定理求出OF=即可;
(2)点,点,可求tan∠OPQ=,得出当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,得出∠CAB=∠ABC=30°,分三种情况,当°,当点P在点B右边,PB=t-4,BD>1,列不等式,解得,当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,PB=2PE>2×1即4-t>2解得t<2,当t=0时,OA′=2,A′Q=2-1=1,t>0,当点P在B′左边,PB′>1,OB′=OB=4,t<-5即可.
【详解】
解:(1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′;
②∵点C为图形N,OC=2为图形M与图形N的“转后距”,
∴“转后距”为2,
故答案为2;
③线段AC为图形N,
过点O作OF⊥AC于F,
根据勾股定理OA=,AC=,
∴OA=AC=OC=2,
∴△OAC为等边三角形,
∵OF⊥AC,
∴AF=CF=1,
∴OF=,
∴“转后距”为;
(2)∵点,点,
∴tan∠OPQ=,
∴当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,
∵CB=4-2=2=AC,∠ACO=60°,
∴∠CAB=∠ABC=30°,
分三种情况,
当°,当点P在点B右边,PB=t-4,BD>1,
∴BPsin60>1,
∴,
解得;
当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,
∴∠OEB=180°-∠EPB-∠ABC=180°-60°-30°=90°,
∵PB=4-t,
∴PB=2PE>2×1即4-t>2,
解得t<2,
当t=0时,点P与原点O重合,OA′=2,A′Q=2-1=1,
∴t>0,
∴0<t<2;
当点P在B′左边,PB′>1,OB′=OB=4,
∴t<-5;
综合t的取值范围为t<-5或0<t<2或.
【点睛】
本题考查图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理,掌握图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理是解题关键.
4、(1)4;(2)-1或-7
【分析】
(1)如图,且三点在一条直线上的情况,连接,过点向作垂线交点为,在直角三角形中,,,可求的长;
(2)如图,过点向作垂线交点为,过点作轴垂线交于点,作交点为;由,知,,点G坐标为,得,由知的值,从而得到的值.
【详解】
解:(1)∵∠DAD1=30°且D1、C1、O三点在一条直线上
∴如图所示,连接,过点向作垂线交点为
∴
∵
.
(2)如图过点向作垂线交点为,过点作轴垂线交于点,作交点为
,
在和中
点横坐标可表示为
∴p+q=-7或-1.
【点睛】
本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识.解题的关键与难点是找出线段之间的关系.
5、(1);(2)①见解析;②AE=AF+CE,证明见解析.
【分析】
(1)根据“线段DA的延长线与线段BC相交于点E”可求解;
(2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.
【详解】
(1)如图:AD只能在锐角∠EAF内旋转符合题意
故α的取值范围为:;
(2)补全图形如下:
(3)AE=AF+CE,
证明:在AE上截取AH=AF,由旋转可得:AB=AD,
∴∠D=∠ABF,
∵△ABC为等边三角形,
∴AB=AC,∠BAC=∠ACB=60°,
∴AD=AC,
∵∠DAF=∠CAH,
∴△AFD≌△AHC,
∴∠AFD=∠AHC,∠D=∠ACH,
∴∠AFB=∠CHE,
∵∠AFB+∠ABF=∠ACH+∠HCE=60°,
∴∠CHE+∠D=∠D+∠HCE=60°,
∴∠CHE=∠HCE,
∴CE=HE,
∴AE=AH+HE=AF+CE.
【点睛】
本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.
相关试卷
这是一份2020-2021学年第24章 圆综合与测试课时作业,共36页。试卷主要包含了如图,一个宽为2厘米的刻度尺,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题,共29页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后复习题,共36页。