初中数学沪科版九年级下册第24章 圆综合与测试课时作业
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时作业,共25页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是( )A.80° B.70° C.60° D.50°2、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于( )A.10 B.6 C.6 D.123、计算半径为1,圆心角为的扇形面积为( )A. B. C. D.4、点P(3,﹣2)关于原点O的对称点的坐标是( )A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)5、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )A.1 B.2 C.3 D.46、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是( )A. B.1 C.2 D.7、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为( )A.22.5° B.45° C.90° D.67.5°8、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )A.不变 B.面积扩大为原来的3倍C.面积扩大为原来的9倍 D.面积缩小为原来的9、下列图案中既是轴对称图形,又是中心对称图形的是( )A. B.C. D.10、如图图案中,不是中心对称图形的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一条弧所对的圆心角为,弧长等于,则这条弧的半径为________.2、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.3、如图,在平面直角坐标系xOy中,P为x轴正半轴上一点.已知点,,为的外接圆.(1)点M的纵坐标为______;(2)当最大时,点P的坐标为______.4、在平面直角坐标系中,点关于原点对称的点的坐标是______.5、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知为的直径,切于点C,交的延长线于点D,且.(1)求的大小;(2)若,求的长.2、如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.3、如图,AB是⊙O的直径,弦CD⊥AB于点E,AM是△ACD的外角∠DAF的平分线.(1)求证:AM是⊙O的切线;(2)连接CO并延长交AM于点N,若⊙O的半径为2,∠ANC = 30°,求CD的长.4、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.(1)图1中的“弦图”的四个直角三角形组成的图形是 对称图形(填“轴”或“中心”).(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.5、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__. -参考答案-一、单选题1、A【分析】根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.【详解】证明:∵绕点C逆时针旋转得到,∴,,∴∠ADC=∠DAC,∵点A,D,E在同一条直线上,∴,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故选A.【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.2、D【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=6,∴△OBC是等边三角形,∴OB=BC=6.∴⊙O的直径等于12.故选:D.【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.3、B【分析】直接根据扇形的面积公式计算即可.【详解】故选:B.【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.4、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).故选:B.【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.5、B【分析】由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.【详解】由题意以及旋转的性质知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°故为等边三角形,即AB= AD =BD=2则CD=BC-BD=4-2=2故选:B.【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.6、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故选A.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.7、B【分析】根据同弧所对的圆周角是圆心角的一半即可得.【详解】解:∵,∴,∴,故选:B.【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.8、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.【详解】设原来扇形的半径为r,圆心角为n,∴原来扇形的面积为,∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的,∴变化后的扇形的半径为3r,圆心角为,∴变化后的扇形的面积为,∴扇形的面积不变.故选:A.【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.9、B【分析】根据中心对称图形与轴对称图形的概念逐项分析【详解】解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.10、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C.【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.二、填空题1、9cm【分析】由弧长公式即可求得弧的半径.【详解】∵∴故答案为:9cm【点睛】本题考查了扇形的弧长公式,善于对弧长公式变形是关键.2、60【分析】正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.【详解】360°÷6=60°故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.3、5 (4,0) 【分析】(1)根据点M在线段AB的垂直平分线上求解即可;(2)点P在⊙M切点处时,最大,而四边形OPMD是矩形,由勾股定理求解即可.【详解】解:(1)∵⊙M为△ABP的外接圆,∴点M在线段AB的垂直平分线上,∵A(0,2),B(0,8),∴点M的纵坐标为:,故答案为:5;(2)过点,,作⊙M与x轴相切,则点M在切点处时,最大,理由:若点是x轴正半轴上异于切点P的任意一点,设交⊙M于点E,连接AE,则∠AEB=∠APB,∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即点P在切点处时,∠APB最大,∵⊙M经过点A(0,2)、B(0,8),∴点M在线段AB的垂直平分线上,即点M在直线y=5上,∵⊙M与x轴相切于点P,MP⊥x轴,从而MP=5,即⊙M的半径为5,设AB的中点为D,连接MD、AM,如上图,则MD⊥AB,AD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四边形OPMD是矩形,从而OP=MD,由勾股定理,得MD=,∴OP=MD=4,∴点P的坐标为(4,0),故答案为:(4,0).【点睛】本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键.4、(3,4)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.5、【分析】绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是故答案为:【点睛】本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.三、解答题1、(1)45°(2)【分析】(1)连接OC,根据切线的性质得到OC⊥CD,根据圆周角定理得到∠DOC=2∠CAD,进而证明∠D=∠DOC,根据等腰直角三角形的性质求出∠D的度数;(2)根据等腰三角形的性质求出OC,根据弧长公式计算即可.(1)连接.∵ ,∴ ,即 .∵ ,∴ .∵ 是⊙的切线,∴ ,即 .∴ . ∴ .∴ .(2)∵ ,,∴ .∵ ,∴ .∴ 的长.【点睛】本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.2、(1)①见解析;②见解析;(2).【分析】(1)①连接OD,由角平分线的性质解得,再根据内错角相等,两直线平行,证明,继而由两直线平行,同旁内角互补证明即可解题;②连接DE,由弦切角定理得到,再证明,由相似三角形对应边成比例解题;(2)证明是等边三角形,四边形DOAF是菱形,,结合扇形面积公式解题.【详解】解:(1)①连接OD,是∠BAC的平分线是⊙O的切线;②连接DE,是⊙O的切线,是直径(2)连接DE、OD、DF、OF,设圆的半径为R,点F是劣弧AD的中点,OF是DA中垂线DF=AF,是等边三角形,四边形DOAF是菱形,.【点睛】本题考查圆的综合题,涉及切线的判定与性质、平行四边形的性质、等边三角形的判定与性质、相似三角形的判定与性质、扇形面积等知识,综合性较强,有难度,掌握相关知识是解题关键.3、(1)见解析(2)CD=2【分析】(1)由题意易得BC=BD,∠DAM=∠DAF,则有∠CAB=∠DAB,进而可得∠BAM=90°,然后问题可求证;(2)由题意易得CD//AM,∠ANC=∠OCE=30°,然后可得OE=1,CE=,进而问题可求解.(1)证明:∵AB是⊙O的直径,弦CD⊥AB于点E∴BC=BD∴∠CAB=∠DAB∵AM是∠DAF的平分线∴∠DAM=∠DAF∵∠CAD+∠DAF=180°∴∠DAB+∠DAM=90°即∠BAM=90°,AB⊥AM∴AM是⊙O的切线(2)解:∵AB⊥CD,AB⊥AM ∴CD//AM∴∠ANC=∠OCE=30°在Rt△OCE中,OC=2∴OE=1,CE=∵AB是⊙O的直径,弦CD⊥AB于点E∴CD=2CE=2.【点睛】本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键.4、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是轴对称图形而不是中心对称图形;图3既是轴对称图形,又是中心对称图形.【点睛】本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.5、2+【分析】连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.利用勾股定理构建方程解决问题即可.【详解】解:连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.∵∠AOB=90°,∴AB是直径,∵A(-4,0),B(0,2),∴,∵∠AMC=2∠AOC=120°,,在Rt△COH中,,,在Rt△ACH中,AC2=AH2+CH2,∴,∴a=2+ 或2-(因为OC>OB,所以2-舍弃),∴OC=2+,故答案为:2+.【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.
相关试卷
这是一份初中数学第24章 圆综合与测试练习,共26页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。
这是一份初中数学第24章 圆综合与测试练习,共29页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题,共32页。