搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析沪科版九年级数学下册第24章圆定向练习试卷(精选含答案)

    2022年最新精品解析沪科版九年级数学下册第24章圆定向练习试卷(精选含答案)第1页
    2022年最新精品解析沪科版九年级数学下册第24章圆定向练习试卷(精选含答案)第2页
    2022年最新精品解析沪科版九年级数学下册第24章圆定向练习试卷(精选含答案)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第24章 圆综合与测试达标测试

    展开

    这是一份数学九年级下册第24章 圆综合与测试达标测试,共35页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB是⊙O的直径,弦,则阴影部分图形的面积为(    A. B. C. D.2、点P(3,﹣2)关于原点O的对称点的坐标是(  )A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)3、如图,在Rt△ABC中,,以边上一点为圆心作,恰与边分别相切于点,则阴影部分的面积为(    A. B. C. D.4、如图,在中,,将绕点C逆时针旋转90°得到,则的度数为(    A.105° B.120° C.135° D.150°5、已知⊙O的半径为4,,则点A在(      A.⊙O B.⊙O C.⊙O D.无法确定6、平面直角坐标系中点关于原点对称的点的坐标是(    A. B. C. D.7、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为(    A.36 cm B.27 cm C.24 cm D.15 cm8、下面的图形中既是轴对称图形又是中心对称图形的是(    A. B. C. D.9、如图,在中,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是(    A. B. C. D.10、下列四个图案中,是中心对称图形但不是轴对称图形的是(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知如图,AB=8,AC=4,∠BAC=60°,BC所在圆的圆心是点O,∠BOC=60°,分别在、线段ABAC上选取点PEF,则PE+EF+FP的最小值为____________.2、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.3、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OBOC,若弦BC的长度为,则∠BAC=________度.4、如图,点D为边长是的等边△ABCAB左侧一动点,不与点AB重合的动点D在运动过程中始终保持∠ADB=120°不变,则四边形ADBC的面积S的最大值是 ____.5、如图,在平面直角坐标系中,点N是直线上动点,M上动点,若点C的坐标为,且y轴相切,则长度的最小值为____________.三、解答题(5小题,每小题10分,共计50分)1、如图,正方形ABCD的顶点ABx轴的负半轴上,顶点CD在第二象限.将正方形ABCD绕点A按顺时针方向旋转,BCD的对应点分别为B1C1D1,且D1C1O三点在一条直线上.记点D1的坐标是(mn),C1的坐标是(pq).(1)设∠DAD1=30°,n=2,求证:OD1的长度;(2)若∠DAD1<90°,mn满足m+n=﹣4,p2+q2=25,求p+q的值.2、如图1,在⊙O中,ACBD,且ACBD,垂足为点E(1)求∠ABD的度数;(2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;(3)在(2)的条件下,求的长.3、如图,AB是⊙O的直径,点C是⊙O上一点连接BC,半径ODBC(1)求证:弧AD=弧CD(2)连接AC、BD相交于点FACOD相交于点E,连接CD,若⊙O的半径为5,BC=6,求CDEF的长.4、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若PQ两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.已知点N(3,0),A(1,0),(1)①在点ABC中,线段ON的“二分点”是______;②点Da,0),若点C为线段OD的“二分点”,求a的取值范围;(2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.5、如图,⊙O的半径为10cm,弦AB垂直平分半径OC,垂足为点D(1)弦AB的长为          (2)求劣弧的长. -参考答案-一、单选题1、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.【详解】解:设ABCD交于点EAB是⊙O的直径,弦CDABCD=2,如图,CE=CD=,∠CEO=∠DEB=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠OCE=30°,又∵,即在△OCE和△BDE中,∴△OCE≌△BDEAAS),∴阴影部分的面积S=S扇形COB=故选D.【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.2、B【分析】根据“平面直角坐标系中任意一点Pxy),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.3、A【分析】连结OC,根据切线长性质DC=ACOC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可.【详解】解:连结OC∵以边上一点为圆心作,恰与边分别相切于点A, DC=ACOC平分∠ACD∴∠ACD=90°-∠B=60°,∴∠OCD=∠OCA==30°,在Rt△ABC中,AC=ABtanB=3×在Rt△AOC中,∠ACO=30°,AO=ACtan30°=OD=OA=1,DC=AC=∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,S阴影=故选择A.【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.4、B【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.5、C【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.【详解】解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,d>r∴点A在⊙O外,故选:C.【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔dr;②点P在圆上⇔d=r;③点P在圆内⇔dr6、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.7、C【分析】连接,过点于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可.【详解】解:连接,过点于点,交于点,如图所示:的直径为中,即水的最大深度为故选:C.【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.8、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A.【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.9、C【分析】过点AACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.【详解】解:如图,过点AACx轴于点C ,则解得:∴点∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.10、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题1、12【分析】如图,连接BCAO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MNABE,交ACF,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题.【详解】解:如图,连接BCAO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MNABE,交ACF,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN∴当MN的值最小时,△PEF的值最小,AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,MN=AM=PA∴当PA的值最小时,MN的值最小,AB的中点J,连接CJAB=8,AC=4,AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等边三角形,JC=JA=JB∴∠ACB=90°,BC=∵∠BOC=60°,OB=OC∴△OBC是等边三角形,OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,AHOHAH=AC=2,CH=AH=2OH=6OA==4∵当点P在直线OA上时,PA的值最小,最小值为-MN的最小值为•(-)=-12.故答案:-12.【点睛】本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题.2、60【分析】正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.【详解】360°÷6=60°故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.3、60【分析】RtBOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.【详解】解:如图作OEBCEOEBCBE=EC=,∠BOE=∠COEOE=1,OB=2OE∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案为:60.【点睛】本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.4、【分析】根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可.【详解】解:根据题意作等边三角形的外接圆,D在运动过程中始终保持∠ADB=120°不变,在圆上运动,当点运动到的中点时,四边形ADBC的面积S的最大值,过点的垂线交于点,如图:中,解得:过点的垂线交于故答案是:【点睛】本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质.5、-2【分析】由图可知,当CNABCMN三点共线时,长度最小,利用勾股定理求出CN的长,故可求解.【详解】由图可知,当CNABCMN三点共线时,长度最小∵直线AB的解析式为x=0时,y=5,当y=0时,x=5B(0,5),A(5,0)AO=BO,△AOB是等腰直角三角形∴∠BAO=90°CNAB时,则△ACN是等腰直角三角形CN=ANCAC=7AC2=CN2+AN2=2CN2CN=CMN三点共线时,长度最小MN=CN-CM=-2故答案为:-2.【点睛】此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.三、解答题1、(1)4;(2)-1或-7【分析】(1)如图,三点在一条直线上的情况,连接,过点作垂线交点为,在直角三角形中,,可求的长;(2)如图,过点作垂线交点为,过点轴垂线交于点,作交点为;由,知,点G坐标为,得,由的值,从而得到的值.【详解】解:(1)∵∠DAD1=30°且D1C1O三点在一条直线上∴如图所示,连接,过点作垂线交点为(2)如图过点作垂线交点为,过点轴垂线交于点,作交点为点横坐标可表示为p+q=-7或-1.【点睛】本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识.解题的关键与难点是找出线段之间的关系.2、(1);(2);(3)【分析】(1)如图,过 垂足分别为 连接证明 四边形为正方形,可得 证明 可得答案;(2)先求解 再结合(1)的结论可得答案;(3)如图,连接 先求解 再证明 再求解 可得 再利用弧长公式计算即可.【详解】解:(1)如图,过 垂足分别为 连接 四边形为矩形,由勾股定理可得: 四边形为正方形, (2)如图,过 垂足分别为 由(1)得:四边形为正方形, OA=2,∠OAB=15°, (3)如图,连接 【点睛】本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.3、(1)见解析;(2)CD=EF=1.【分析】(1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证.(2)根据直径所对的圆周角是直角求出∠ACB=90°,根据平行线的性质求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=4,根据中位线定理求出OE,在RtCDE中,根据勾股定理求出CD,因为,所以△EDF∽△BCF,最后根据似的性质,列方程求解即可.【详解】(1)解:连结OC∴∠1=∠B∠2=∠COB =OC∴∠B=∠C∴∠1=∠2∴弧AD=弧CD(2)∵AB的直径∴∠ACB=90°∴∠AEO=∠ACB=90°RtABC中,∠ACB=90°,BC=6,AB=10 AC=8∵半径ODAC于E EC=AE=4  OE=ED=2  由勾股定理得,CD=∴△EDF∽△CBFEF=x,则FC=4-xEF=1,经检验符合题意.【点睛】本题考查了圆的综合题,圆的有关性质:圆的半径相等;同圆或等圆中,相等的圆心角所对的弧等;直径所对的圆周角是直角;垂径定理;平行线的性质,勾股定理,三角形中位线定理,三角形相似的判定和性质等知识,正确理解圆的相关性质是解题的关键.4、(1)①BC;②;(2)【分析】(1)①分别找出点ABC到线段ON的最小值和最大值,是否满足“二分点”定义即可;②对a的取值分情况讨论:,根据“二分点”的定义可求解;(2)设线段AN上存在的“二分点”为,对的取值分情况讨论,根据“二分点”的定义可求解.【详解】(1)①∵点AON上,故最小值为0,不符合题意,BON的最小值为,最大值为∴点B是线段ON的“二分点”,CON的最小值为1,最大值为∴点C是线段ON的“二分点”,故答案为:BC②若时,如图所示:COD的最小值为,最大值为∵点C为线段OD的“二分点”,解得:,如图所示:COD的最小值为1,最大值为,满足题意;时,如图所示:COD的最小值为1,最大值为∵点C为线段OD的“二分点”,解得:(舍);时,如图所示:COD的最小值为,最大值为∵点C为线段OD的“二分点”,解得:(舍),综上所得:a的取值范围为(2)如图所示,设线段AN上存在的“二分点”为时,最小值为:,最大值为:,即时,最小值为:,最大值为:∴∴,即不存在;时,最小值为:,最大值为:,即不存在;时,最小值为:,最大值为:,即综上所述,r的取值范围为【点睛】本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键.5、(1),(2)【分析】(1)根据弦AB垂直平分半径OCOC=OB=10cm,得出OD=CD=,∠ODB=90°,根据勾股定理,可求AB=2BD=2×(2)根据锐角三角函数定义求出cos∠DOB=,得出∠DOB=60°,利用弧长公式求出即可.【详解】解:(1)∵弦AB垂直平分半径OCOC=OB=10cm,OD=CD=,∠ODB=90°,AB=2BD=2×故答案为(2)cos∠DOB=∴∠DOB=60°,的度数为2×60°=120°,【点睛】本题考查垂直平分线性质,勾股定理,锐角三角函数,弧长,掌握垂直平分线性质,勾股定理,锐角三角函数,弧长是解题关键. 

    相关试卷

    沪科版九年级下册第24章 圆综合与测试课后复习题:

    这是一份沪科版九年级下册第24章 圆综合与测试课后复习题,共32页。

    数学九年级下册第24章 圆综合与测试测试题:

    这是一份数学九年级下册第24章 圆综合与测试测试题,共31页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课后测评:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后测评,共30页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map