搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析沪科版九年级数学下册第24章圆专题测试试题(含详细解析)

    2022年最新精品解析沪科版九年级数学下册第24章圆专题测试试题(含详细解析)第1页
    2022年最新精品解析沪科版九年级数学下册第24章圆专题测试试题(含详细解析)第2页
    2022年最新精品解析沪科版九年级数学下册第24章圆专题测试试题(含详细解析)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第24章 圆综合与测试练习

    展开

    这是一份2021学年第24章 圆综合与测试练习,共32页。
    沪科版九年级数学下册第24章圆专题测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )

    A.50° B.60° C.40° D.30°
    2、点P(-3,1)关于原点对称的点的坐标是( )
    A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)
    3、已知⊙O的半径为4,,则点A在( )
    A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
    4、下列图形中,可以看作是中心对称图形的是( )
    A. B.
    C. D.
    5、如图,是△ABC的外接圆,已知,则的大小为( )

    A.55° B.60° C.65° D.75°
    6、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )

    A. B.
    C.或 D.(﹣2,0)或(﹣5,0)
    7、如图,AB 为⊙O 的直径,弦 CD^AB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )

    A.3 B.2 C.1 D.
    8、的边经过圆心,与圆相切于点,若,则的大小等于( )

    A. B. C. D.
    9、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为( )

    A. B. C. D.8
    10、如图,在中,,,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )

    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在矩形中,,,F为中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90°得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:①当时,;②点E到边的距离为m;③直线一定经过点;④的最小值为.其中结论正确的是______.(填序号即可)

    2、若一次函数y=kx+8(k≠0)的图象与x轴、y轴分别交于A、B两点,当k的取值变化时,点A随之在x轴上运动,将线段AB绕点B逆时针旋转90°得到BQ,连接OQ,则OQ长的最小值是 ___.
    3、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.

    4、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.
    5、如图,在平面直角坐标系中,一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_______.

    三、解答题(5小题,每小题10分,共计50分)
    1、在平面直角坐标系xOy中,旋转角满足,对图形M与图形N给出如下定义:将图形M绕原点逆时针旋转得到图形.P为图形上任意一点,Q为图形N上的任意一点,称PQ长度的最小值为图形M与图形N的“转后距”.已知点,点,点.
    (1)当时,记线段OA为图形M.
    ①画出图形;
    ②若点C为图形N,则“转后距”为______;
    ③若线段AC为图形N,求“转后距”;

    (2)已知点,点,记线段AB为图形M,线段PQ为图形N,对任意旋转角,“转后距”大于1,直接写出t的取值范围.
    2、如图,,是的两条切线,切点分别为,,连接并延长交于点,过点作的切线交的延长线于点,于点.

    (1)求证:四边形是矩形;
    (2)若,,求的长..
    3、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.

    (1)若,求的度数;
    (2)若,求的大小;
    (3)猜想CF,BF,AF之间的数量关系,并证明.
    4、如图,在6×6的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,A,B两点均在格点上.请按要求在图①,图②,图③中画图:
    (1)在图①中,画等腰△ABC,使AB为腰,点C在格点上.
    (2)在图②中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,C,D两点均在格点上.
    (3)在图③中,画△ABC,使∠ACB=90°,面积为5,点C在格点上.

    5、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.

    (1)图1中的“弦图”的四个直角三角形组成的图形是   对称图形(填“轴”或“中心”).
    (2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:
    ①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;
    ②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.

    -参考答案-
    一、单选题
    1、A
    【分析】
    根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.
    【详解】
    解: 将△OAB绕点O逆时针旋转80°得到△OCD,

    ∠A的度数为110°,∠D的度数为40°,


    故选A
    【点睛】
    本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.
    2、C
    【分析】
    据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.
    【详解】
    解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).
    故选:C.
    【点睛】
    本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.
    3、C
    【分析】
    根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.
    【详解】
    解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,
    ∴d>r,
    ∴点A在⊙O外,
    故选:C.
    【点睛】
    本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.
    4、C
    【分析】
    根据中心对称图形的定义进行逐一判断即可.
    【详解】
    解:A、不是中心对称图形,故此选项不符合题意;
    B、不是中心对称图形,故此选项不符合题意;
    C、是中心对称图形,故此选项符合题意;
    D、不是中心对称图形,故此选项不符合题意;
    故选C.
    【点睛】
    本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:
    把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
    5、C
    【分析】
    由OA=OB,,求出∠AOB=130°,根据圆周角定理求出的度数.
    【详解】
    解:∵OA=OB,,
    ∴∠BAO=.
    ∴∠AOB=130°.
    ∴=∠AOB=65°.
    故选:C.
    【点睛】
    此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.
    6、C
    【分析】
    由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
    【详解】
    解:∵直线交x轴于点A,交y轴于点B,
    ∴令x=0,得y=-3,令y=0,得x=-4,
    ∴A(-4,0),B(0,-3),
    ∴OA=4,OB=3,
    ∴AB=5,
    设⊙P与直线AB相切于D,
    连接PD,

    则PD⊥AB,PD=1,
    ∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
    ∴△APD∽△ABO,
    ∴,
    ∴,
    ∴AP= ,
    ∴OP= 或OP= ,
    ∴P或P,
    故选:C.
    【点睛】
    本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
    7、B
    【分析】
    连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.
    【详解】
    解:连接OC,如图

    ∵AB 为⊙O 的直径,CD^AB,垂足为点 E,CD=8,
    ∴,
    ∵,
    ∴,
    ∴;
    故选:B.
    【点睛】
    本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.
    8、A
    【分析】
    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
    【详解】
    解:连接,



    与圆相切于点,


    故选:A.
    【点睛】
    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    9、A
    【分析】
    过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.
    【详解】
    解:如图,过点作于点,连接,

    AB是的直径,,,



    在中,


    故选A
    【点睛】
    本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.
    10、B
    【分析】
    阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.
    【详解】
    解:由图可知:阴影部分的面积=扇形扇形,
    由旋转性质可知:,,
    ,,
    在中,,,,
    ,,
    有勾股定理可知:,
    阴影部分的面积=扇形扇形


    故选:B.
    【点睛】
    本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.
    二、填空题
    1、②③④
    【分析】
    ①当在点的右边时,得出即可判断;
    ②证明出即可判断;
    ③根据为等腰直角三角形,得出都是等腰直角三角形,得到即可判断;
    ④当时,有最小值,计算即可.
    【详解】
    解:,
    为等腰直角三角形,

    当在点的左边时,

    当在点的右边时,

    故①错误;
    过点作,

    在和中,
    根据旋转的性质得:,




    故②正确;
    由①中得知为等腰直角三角形,

    也是等腰直角三角形,
    过点,
    不管P在上怎么运动,
    得到都是等腰直角三角形,

    即直线一定经过点,
    故③正确;
    是等腰直角三角形,
    当时,有最小值,


    为等腰直角三角形,


    由勾股定理:


    故④正确;
    故答案是:②③④.
    【点睛】
    本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理.
    2、8
    【分析】
    根据一次函数解析式可得:,,过点B作轴,过点A作,过点Q作,由旋转的性质可得,,依据全等三角形的判定定理及性质可得:ΔMAB≅ΔNBQ,,,即可确定点Q的坐标,然后利用勾股定理得出OQ的长度,最后考虑在什么情况下取得最小值即可.
    【详解】
    解:函数得:,,过点B作轴,过点A作,过点Q作,连接OQ,如图所示:

    将线段BA绕点B逆时针旋转得到线段BQ,
    ∴,,

    ∴,
    在ΔMAB与ΔNBQ中,

    ∴ΔMAB≅ΔNBQ,
    ∴,,
    点Q的坐标为,

    当或时,取得最小值为8,
    故答案为:8.
    【点睛】
    题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键.
    3、
    【分析】
    设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,先证明△EMC≌△FMA得ME=MF,从而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分别求出BD和DM,即可得到答案.
    【详解】
    解:设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,如图:

    ∵△ABC绕着点C逆时针旋转60°,
    ∴∠ACM=60°,CA=CM,
    ∴△ACM是等边三角形,
    ∴CM=AM①,∠ACM=∠MAC=60°,
    ∵∠B=90°,AB=BC=1,
    ∴∠BCA=∠CAB=45°,AC==CM,
    ∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,
    ∴∠ECM=∠MAF=75°②,
    ∵MF⊥BA,ME⊥BC,
    ∴∠E=∠F=90°③,
    由①②③得△EMC≌△FMA,
    ∴ME=MF,
    而MF⊥BA,ME⊥BC,
    ∴BM平分∠EBF,
    ∴∠CBD=45°,
    ∴∠CDB=180°-∠BCA-∠CBD=90°,
    Rt△BCD中,BD=BC=,
    Rt△CDM中,DM=CM =,
    ∴BM=BD+DM=,
    故答案为:.
    【点睛】
    本题考查等腰三角形性质、等边三角形的性质及判定,解题的关键是证明∠CDB=90°.
    4、
    【分析】
    绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
    【详解】
    解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是
    故答案为:
    【点睛】
    本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.
    5、##
    【分析】
    先求出点A、B的坐标,过点A作AF⊥AB,交直线BC于点F,过点F作EF⊥x轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案.
    【详解】
    解:∵一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B两点,
    ∴令,则;令,则,
    ∴点A为(2,0),点B为(0,4),
    ∴,;
    过点A作AF⊥AB,交直线BC于点F,过点F作EF⊥x轴,垂足为E,如图,

    ∴,
    ∴,
    ∴,
    ∵,
    ∴△ABF是等腰直角三角形,
    ∴AF=AB,
    ∴△ABO≌△FAE(AAS),
    ∴AO=FE,BO=AE,
    ∴,,
    ∴,
    ∴点F的坐标为(,);
    设直线BC为,则
    ,解得:,
    ∴直线BC的函数表达式为;
    故答案为:;
    【点睛】
    本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.
    三、解答题
    1、(1)①OA′,图形见详解;②2;③ “转后距”为;(2)t的取值范围为t<-5或0<t<2或.
    【分析】
    (1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′.
    ②∵点C为图形N,求出OC=2最短距离;
    ③过点O作OF⊥AC于F,先证△OAC为等边三角形,OF⊥AC,根据勾股定理求出OF=即可;
    (2)点,点,可求tan∠OPQ=,得出当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,得出∠CAB=∠ABC=30°,分三种情况,当°,当点P在点B右边,PB=t-4,BD>1,列不等式,解得,当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,PB=2PE>2×1即4-t>2解得t<2,当t=0时,OA′=2,A′Q=2-1=1,t>0,当点P在B′左边,PB′>1,OB′=OB=4,t<-5即可.
    【详解】
    解:(1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′;
    ②∵点C为图形N,OC=2为图形M与图形N的“转后距”,
    ∴“转后距”为2,
    故答案为2;
    ③线段AC为图形N,
    过点O作OF⊥AC于F,
    根据勾股定理OA=,AC=,
    ∴OA=AC=OC=2,
    ∴△OAC为等边三角形,
    ∵OF⊥AC,
    ∴AF=CF=1,
    ∴OF=,
    ∴“转后距”为;

    (2)∵点,点,
    ∴tan∠OPQ=,
    ∴当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,
    ∵CB=4-2=2=AC,∠ACO=60°,
    ∴∠CAB=∠ABC=30°,
    分三种情况,
    当°,当点P在点B右边,PB=t-4,BD>1,
    ∴BPsin60>1,
    ∴,
    解得;

    当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,
    ∴∠OEB=180°-∠EPB-∠ABC=180°-60°-30°=90°,
    ∵PB=4-t,
    ∴PB=2PE>2×1即4-t>2,
    解得t<2,
    当t=0时,点P与原点O重合,OA′=2,A′Q=2-1=1,
    ∴t>0,
    ∴0<t<2;

    当点P在B′左边,PB′>1,OB′=OB=4,
    ∴t<-5;

    综合t的取值范围为t<-5或0<t<2或.
    【点睛】
    本题考查图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理,掌握图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理是解题关键.
    2、(1)见详解;(2)7
    【分析】
    (1)根据切线的性质和矩形的判定定理即可得到结论;
    (2)根据切线长定理可得AB=AC,BE=DE,再利用勾股定理即可求解.
    【详解】
    (1)证明:∵,DE是的两条切线,于点
    ∴∠EFC=∠EDC=∠FCD=90°,
    ∴四边形是矩形;
    (2)∵四边形是矩形,
    ∴EF=,CF=,
    ∵,,DE是的两条切线,
    ∴AB=AC,BE=DE,
    设AB=AC=x,则AE=x+2,AF=x-2,
    在中,,
    解得:x=5,
    ∴AC=5+2=7.
    【点睛】
    本题主要考查切线长定理和勾股定理以及矩形的判定定理,掌握切线长定理以及勾股定理是解题的关键.
    3、(1)20°;(2);(3)AF= CF+BF,理由见解析
    【分析】
    (1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;
    (2)同(1)求解即可;
    (3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.
    【详解】
    解:(1)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,
    ∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,
    ∴,
    ∴∠CBF=∠ABE-∠ABC=20°;
    (2)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,,AC=AE,
    ∴ ,AB=AE,
    ∴,
    ∴;
    (3)AF= CF+BF,理由如下:
    如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,
    ∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG
    在△AEF和△ACF中,

    ∴△AEF≌△ACF(SAS),
    ∴∠AFE=∠AFC,
    ∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,
    ∴∠BFD=∠ACD=60°,
    ∴∠AFE=∠AFC=60°,
    ∴∠BFC=120°,
    ∴∠BAC+∠BFC=180°,
    ∴∠ABF+∠ACF=180°,
    ∴∠ACG+∠ACF=180°,
    ∴F、C、G三点共线,
    ∴△AFG是等边三角形,
    ∴AF=GF=CF+CG=CF+BF.

    【点睛】
    本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.
    4、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);
    (2)作边长为2,高为4的平行四边形即可;
    (3)根据(1)的结论,作BG边的中线,即可得解.
    【详解】
    解:(1)如图①中,△ABC即为所求作(答案不唯一);

    (2)如图②中,平行四边形ABCD即为所求作;

    (3)如图③中,△ABC即为所求作(答案不唯一);

    ∵AB=AG,BC=CG,
    ∴AC⊥BG,
    ∵△ABG的面积为,
    ∴△ABC的面积为5,且∠ACB=90°.
    【点睛】
    本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    5、
    (1)中心
    (2)见解析
    【分析】
    (1)利用中心对称图形的意义得到答案即可;
    (2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;
    ②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.
    (1)
    图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,
    故答案为:中心;
    (2)
    如图2是轴对称图形而不是中心对称图形;

    图3既是轴对称图形,又是中心对称图形.
    【点睛】
    本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试一课一练:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试一课一练,共38页。试卷主要包含了等边三角形等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试测试题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试测试题,共33页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试达标测试:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试达标测试,共27页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map