初中数学沪科版九年级下册第24章 圆综合与测试一课一练
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试一课一练,共27页。试卷主要包含了下列图形中,是中心对称图形的是,下列语句判断正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,是△ABC的外接圆,已知,则的大小为( )A.55° B.60° C.65° D.75°2、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,,,则阴影部分的面积为( )A. B. C. D.3、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )A.3 B.4 C.5 D.64、若的圆心角所对的弧长是,则此弧所在圆的半径为( )A.1 B.2 C.3 D.45、下列图形中,是中心对称图形的是( )A. B.C. D.6、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )A.105° B.120° C.135° D.150°7、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为( )A.8 B. C. D.8、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是( )A.1cm B.2cm C.2cm D.4cm9、下列语句判断正确的是( )A.等边三角形是轴对称图形,但不是中心对称图形B.等边三角形既是轴对称图形,又是中心对称图形C.等边三角形是中心对称图形,但不是轴对称图形D.等边三角形既不是轴对称图形,也不是中心对称图形10、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为( )A.64° B.52° C.42° D.36°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).2、如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.3、如图,在⊙O中,∠BOC=80°,则∠A=___________°.4、圆锥的母线长为,底面圆半径为r,则全面积为______.5、如图,在⊙O中,=,AB=10,BC=12,D是上一点,CD=5,则AD的长为______.三、解答题(5小题,每小题10分,共计50分)1、问题:如图,是的直径,点在内,请仅用无刻度的直尺,作出中边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.作法:如图,①延长交于点,延长交于点;②分别连接,并延长相交于点;③连接并延长交于点.所以线段即为中边上的高.(1)根据小芸的作法,补全图形;(2)完成下面的证明.证明:∵是的直径,点,在上,∴________°.(______)(填推理的依据)∴,.∴,________是的两条高线.∵,所在直线交于点,∴直线也是的高所在直线.∴是中边上的高.2、如图,A,P,B,C是⊙O上的四点,∠APC=∠CPB=60°.(1)判断△ABC的形状,并证明你的结论;(2)求证:PA+PB=PC.3、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.(1)若,求的度数;(2)若,求的大小;(3)猜想CF,BF,AF之间的数量关系,并证明.4、新定义:如图①,已知,在内部画射线OC,得到三个角,分别为、、.若这三个角中有一个角是另外一个角的2倍,则称射线OC为的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)(阅读理解)(1)角的平分线______这个角的“幸运线”;(填“是”或“不是”)(初步应用)(2)如图①,,射线OC为的“幸运线”,则的度数为______;(直接写出答案)(解决问题)(3)如图②,已知,射线OM从OA出发,以每秒10°的速度绕O点顺时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点顺时针旋转,设运动的时间为t秒.若OM、ON、OB三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求运动的时间t的值.(实际运用)(4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与时针恰好重合.问小丽帮妈妈取包裹用了多少分钟?5、如图,AB是⊙O的直径,点D,E在⊙O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C.(1)求证:CD是⊙O的切线.(2)若,求阴影部分的面积. -参考答案-一、单选题1、C【分析】由OA=OB,,求出∠AOB=130°,根据圆周角定理求出的度数.【详解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故选:C.【点睛】此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.2、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.【详解】解:根据题意,如图:∵AB是的直径,OD是半径,,∴AE=CE,∴阴影CED的面积等于AED的面积,∴,∵,,∴,∴;故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.3、B【分析】由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.【详解】∵PA,PB是⊙O的切线,A,B为切点,∴,,∴在和中,,∴,∴.故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.4、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r,则周长为2πr,120°所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键.5、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.6、B【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:,∴;故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.7、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.【详解】解:如图所示,连接CP,∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故选C.【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.8、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OA•sin∠OAB=, ∵圆O的内接正六边形的面积为(cm2), ∴△AOB的面积为(cm2), 即, , 解得r=4, 故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.9、A【分析】根据等边三角形的对称性判断即可.【详解】∵等边三角形是轴对称图形,但不是中心对称图形,∴B,C,D都不符合题意;故选:A.【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.10、B【分析】先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.【详解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面内绕点A旋转到△AB′C′的位置,∴∠CAC′等于旋转角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋转角为52°.故选:B.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.二、填空题1、20【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.【详解】∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案为20.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.2、 【分析】过O作OC垂直于弦AB,利用垂径定理得到C为AB的中点,然后由OA=OB,且∠AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由C为AB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OA及AC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离.【详解】解:过O作OC⊥AB,则有C为AB的中点,∵OA=OB,∠AOB=90°,AB=a,∴根据勾股定理得: OA2+OB2=AB,∴OA=,在Rt△AOC中,OA=,AC=AB=,根据勾股定理得:OC==.故答案为:;【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.3、40°度【分析】直接根据圆周角定理即可得出结论.【详解】解:与是同弧所对的圆心角与圆周角,,.故答案为:.【点睛】本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4、【分析】根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案.【详解】解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,故可得,这个扇形的半径为,扇形的弧长为,圆锥的侧面积为;圆锥的全面积为圆锥的底面积侧面积:.故答案为:.【点睛】本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.5、3【分析】过A作AE⊥BC于E,过C作CF⊥AD于F,根据圆周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF, AF即可求解.【详解】解:过A作AE⊥BC于E,过C作CF⊥AD于F,则∠AEB=∠CFD=90°,∵=, AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6, ∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,则,∴AD=DF+AF=3+2,故答案为:3+2.【点睛】本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.三、解答题1、(1)见详解;(2)90,直径所对的圆周角是直角,BD.【分析】(1)根据作图步骤作出图形即可;(2)根据题意填空,即可求解.【详解】解:(1)如图,CH为△ABC中AB边上的高;(2)证明:∵是的直径,点,在上,∴___90_°.(__直径所对的圆周角是直角_)(填推理的依据)∴,.∴,_BD__是的两条高线.∵,所在直线交于点,∴直线也是的高所在直线.∴是中边上的高.故答案为:90,直径所对的圆周角是直角,BD.【点睛】本题考查了圆周角定理的推理,三角形的三条高线相交于一点等知识,熟知两个定理,并根据题意灵活应用是解题关键.2、(1)△ABC是等边三角形,证明见解析;(2)见解析【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)如图所示,在PC取一点E使得AE=AP,先证明△APE是等边三角形,得到AP=PE,∠AEP=60°,可以推出∠AEC=∠APB,然后证明△APB≌△AEC得到BP=CE,即可证明PC=PE+CE=AP+BP.【详解】解:(1)△ABC是等边三角形.证明如下:由圆周角定理:∠BAC=∠CPB,∠ABC=∠APC∵∠APC=∠CPB=60°,∴∠BAC=∠ABC=60°,∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°.∴△ABC是等边三角形.(2)如图所示,在PC取一点E使得AE=AP,∵∠APE=60°,AP=AE,∴△APE是等边三角形,∴AP=PE,∠AEP=60°,∴∠AEC=120°,又∵∠APC=∠CPB=60°,∴∠APB=120°,∴∠AEC=∠APB,∵△ABC是等边三角形,∴AB=AC,又∵∠ABP=∠ACE,∴△APB≌△AEC(AAS),∴BP=CE,∴PC=PE+CE=AP+BP.【点睛】本题考查了圆周角定理、等边三角形的性质与判定,全等三角形的性质与判定,解题的关键是掌握圆周角定理,正确求出∠ABC=∠BAC=60°.3、(1)20°;(2);(3)AF= CF+BF,理由见解析【分析】(1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;(2)同(1)求解即可;(3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.【详解】解:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∴,∴∠CBF=∠ABE-∠ABC=20°;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,,AC=AE,∴ ,AB=AE,∴,∴;(3)AF= CF+BF,理由如下:如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠AFE=∠AFC,∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,∴∠BFD=∠ACD=60°,∴∠AFE=∠AFC=60°,∴∠BFC=120°,∴∠BAC+∠BFC=180°,∴∠ABF+∠ACF=180°,∴∠ACG+∠ACF=180°,∴F、C、G三点共线,∴△AFG是等边三角形,∴AF=GF=CF+CG=CF+BF.【点睛】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.4、(1)是;(2)16°或24°或32°;(3)2或或;(4).【分析】(1)根据幸运线定义即可求解;(2)分3种情况,根据幸运线定义得到方程求解即可;(3)根据幸运线定义得到方程求解即可;(4)利用时针1分钟走,分针1分钟走,可解答问题.【详解】解:(1)一个角的平分线是这个角的“幸运线”;故答案为:是;(2)①设∠AOC=x,则∠BOC=2x,由题意得,x+2x=48°,解得x=16°,②设∠AOC=x,则∠BOC=x,由题意得,x+x=48°,解得x=24°,③设∠AOC=x,则∠BOC=x,由题意得,x+x=48°,解得x=32°,故答案为:16°或24°或32°;(3)OB是射线OM与ON的幸运线,则∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=2;∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=;∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=;故t的值是2或或;(4)时针1分钟走,分针1分钟走,设小丽帮妈妈取包裹用了x分钟,则有0.5x+3×30=6x,解得:x=.【点睛】本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力.理解“幸运线”的定义是解题的关键.5、(1)见详解;(2)【分析】(1)连接OD,由题意易得,则有△ODB是等边三角形,然后可得△AEO也为等边三角形,进而可得OD∥AC,最后问题可求证;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圆O的半径,进而可得扇形OED和△OED的面积,则有弓形ED的面积,最后问题可求解.【详解】(1)证明:连接OD,如图所示:∵四边形BDEO是平行四边形,∴,∴△ODB是等边三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,∵OE=OA,∴△AEO也为等边三角形,∴∠EAO=∠DOB=60°,∴AE∥OD,∴∠ODC+∠C=180°,∵CD⊥AE,∴∠C=90°,∴∠ODC=90°,∵OD是圆O的半径,∴CD是⊙O的切线.(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,∴∠EAO=∠CED=60°,∵∠AOE+∠EOD+∠BOD=180°,∴∠EOD=60°,∴△DEO为等边三角形, ∴ED=OE=AE,∵CD⊥AE,∠CED=60°,∴∠CDE=30°,∴,∵,∴,∴,设△OED的高为h,∴,∴,∴.【点睛】本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时练习,共32页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试一课一练,共38页。试卷主要包含了等边三角形等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试习题,共34页。试卷主要包含了下列语句判断正确的是,下列说法正确的个数有等内容,欢迎下载使用。