开学活动
搜索
    上传资料 赚现金

    2022年强化训练沪科版九年级数学下册第24章圆难点解析练习题(精选)

    2022年强化训练沪科版九年级数学下册第24章圆难点解析练习题(精选)第1页
    2022年强化训练沪科版九年级数学下册第24章圆难点解析练习题(精选)第2页
    2022年强化训练沪科版九年级数学下册第24章圆难点解析练习题(精选)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第24章 圆综合与测试课时训练

    展开

    这是一份2021学年第24章 圆综合与测试课时训练,共28页。
    沪科版九年级数学下册第24章圆难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列汽车标志中既是轴对称图形又是中心对称图形的是(    A. B. C. D.2、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是(  )A..等腰三角形 B.等边三角形C..直角三角形 D..等腰直角三角形3、如图图案中,不是中心对称图形的是(    A. B. C. D.4、图2是由图1经过某一种图形的运动得到的,这种图形的运动是(    A.平移 B.翻折 C.旋转 D.以上三种都不对5、下列四个图案中,是中心对称图形的是(  )A. B.C. D.6、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是(    A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径C.直径是最长的弦 D.垂直于弦的直径平分这条弦7、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△ABC′的位置,使CCAB,则旋转角的度数为(    A.64° B.52° C.42° D.36°8、如图,DC是⊙O的直径,弦ABCDM,则下列结论不一定成立的是(    )A.AM=BM B.CM=DM C. D.9、如图,在中,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是(    A. B. C. D.10、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为(    A.4 B.6 C.8 D.10第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180 cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为______cm.2、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.3、如图,过⊙O外一点P,作射线PAPB分别切⊙O于点AB,点C在劣弧AB上,过点C作⊙O的切线分别与PAPB交于点DE.则______度.4、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.5、如图,将Rt△ABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,∠ABC=38°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 ___.三、解答题(5小题,每小题10分,共计50分)1、如图,AB的直径,CD的一条弦,且于点E(1)求证:(2)若,求的半径.2、如图,在中,OAC上一点,以点O为圆心,OC为半径的圆恰好与AB相切,切点为DAC的另一个交点为E(1)求证:BO平分(2)若,求BO的长.3、新定义:在平面直角坐标系xOy中,若几何图形G与⊙A有公共点,则称几何图形G为⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图1,∠M为⊙A的关联图形,直线l为⊙A的关联直线.(1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:①直线y=2x+2;②直线y=﹣x+3;③双曲线y,是⊙O的关联图形的是    (请直接写出正确的序号).(2)如图2,⊙T的圆心为T(1,0),半径为1,直线ly=﹣x+bx轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.(3)如图3,已知点B(0,2),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HBHD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围.4、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.(1)图1中的“弦图”的四个直角三角形组成的图形是     对称图形(填“轴”或“中心”).(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.5、问题:如图,的直径,点内,请仅用无刻度的直尺,作出边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.作法:如图,①延长于点,延长于点②分别连接并延长相交于点③连接并延长交于点所以线段即为边上的高.(1)根据小芸的作法,补全图形;(2)完成下面的证明.证明:∵的直径,点上,________°.(______)(填推理的依据),________是的两条高线.所在直线交于点∴直线也是的高所在直线.边上的高. -参考答案-一、单选题1、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、D【分析】根据旋转的性质推出相等的边CECF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.【详解】解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,∴∠ECF=90°,CECF∴△CEF是等腰直角三角形,故选:D【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.3、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.4、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C.【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.5、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.6、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.7、B【分析】先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠ACC=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.【详解】解:∵CC′∥AB∴∠ACC′=∠CAB=64°∵△ABC在平面内绕点A旋转到△ABC′的位置,∴∠CAC′等于旋转角,AC=AC′,∴∠ACC′=∠ACC=64°,∴∠CAC′=180°-∠ACC′-∠ACC=180°-2×64°=52°,∴旋转角为52°.故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦ABCDCD过圆心OAM=BM即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CMDM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.9、C【分析】过点AACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.【详解】解:如图,过点AACx轴于点C ,则解得:∴点∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.10、A【分析】根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.【详解】解:∵AB是⊙O的直径,∵∠BAC=30°,BC=2,故选:A【点睛】本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.二、填空题1、【分析】如图,设小圆的切线MN与小圆相切于点D,与大圆交于MN,连接ODOM,根据切线的性质定理和垂径定理求解即可.【详解】解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于MN,连接ODOMODMNMD=DNRtODM中,OM=180cm,OD=60cm,cm,cm,即该球在大圆内滑行的路径MN的长度为cm,故答案为:【点睛】本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键.2、【分析】设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.【详解】解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为根据题意可得:解得:故答案是:【点睛】本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.3、65【分析】连接OAOCOB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分EO平分,再由各角之间的数量关系可得,根据等量代换可得,代入求解即可.【详解】解:如图所示:连接OAOCOBPAPBDE与圆相切于点ABEDO平分EO平分故答案为:65.【点睛】题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.4、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若dr,则直线与圆相交;若dr,则直线于圆相切;若dr,则直线与圆相离,从而得出答案.【分析】解:∵x2﹣5x+6=0,x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,∴当半径为2时,直线l与圆O的的位置关系是相切,当半径为3时,直线l与圆O的的位置关系是相交,综上所述,直线l与圆O的的位置关系是相切或相交.故答案为:相切或相交.【点睛】本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.5、76°或142°【分析】AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,根据圆周角定理得∠BOD=2∠BCD,根据等腰三角形的性质分BC为底边和BC为腰求∠BCD的度数即可.【详解】解:设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,∵Rt△ABC的斜边AB与量角器的直径恰好重合,ACBD四点共圆,圆心为点O∴∠BOD=2∠BCD①若BC为等腰三角形的底边时,如图射线CD1,则∠BCD1=∠ABC=38°,连接OD1,则∠BOD1=2∠BCD1=76°;②若BC为等腰三角形的腰时,当∠ABC为顶角时,如图射线CD2,则∠BCD2=(180°-∠ABC)÷2=71°,连接OD2,则∠BOD2=2∠BCD2=142°,当∠ABC为底角时,∠BCD=180°-2∠ABC=104°,不符合题意,舍去,综上,点D在量角器上对应的度数是76°或142°,故答案为:76°或142°.【点睛】本题考查圆周角定理、等腰三角形的性质、三角形的内角和定理,熟练掌握圆周角定理,利用分类讨论思想解决问题是解答的关键.三、解答题1、(1)见解析;(2)3【分析】(1)根据∠D=∠B,∠BCO=∠B,代换证明;(2)根据垂径定理,得CE=,利用勾股定理计算即可.【详解】(1)证明:OCOB∴∠BCO=∠B∴∠B=∠D∴∠BCO=∠D(2)解:∵AB是⊙O的直径,且CDAB于点ECECDCDCERtOCE中,OE=1,∴⊙O的半径为3.【点睛】本题考查了圆周角定理,垂径定理,勾股定理,结合图形,熟练运用三个定理是解题的关键.2、(1)见解析;(2)2【分析】(1)连接OD,由AB相切得,由HL定理证明由全等三角形的性质得,即可得证;(2)设的半径为,则,在中,得出关系式求出,可得出的长,在中,由正切值求出,在中,由勾股定理求出即可.【详解】(1)如图,连接ODAB相切,中,平分(2)设的半径为,则中,解得:中,,即中,【点睛】本题考查圆与直线的位置关系,全等三角形的判定与性质、三角函数以及勾股定理,掌握相关知识点的应用是解题的关键.3、(1)①③;(2)N的横坐标;(3)【分析】(1)在坐标系中作出圆及三个函数图象,即可得;(2)根据题意可得直线l的临界状态是与圆T相切的两条直线,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;(3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:①当点Q在点P的上方时,连接BPDQ,交于点H;②当点P在点Q的上方时,直线BPDQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;③当时,两条直线与圆无公共点;综合三种情况即可得.【详解】解:(1)在坐标系中作出圆及三个函数图象,可得①③函数解析式与圆有公共点,故答案为:①③;(2)如图所示:∵直线l的关联直线,∴直线l的临界状态是与相切的两条直线当临界状态为时,连接TM∵当时,时,为等腰直角三角形,∴点同理可得当临界状态为时,N的横坐标(3)①如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BPDQ,交于点H设点,直线HB的解析式为,直线HD的解析式为时,互为相反数,可得由图可得:,则结合解得:时,h的最大值为②如图所示:当点P在点Q的上方时,直线BPDQ,交于点H,当圆心Ix轴上时, 设点,直线HB的解析式为,直线HD的解析式为时,互为相反数,可得由图可得:,则结合解得:时,h的最小值为③当时,两条直线与圆无公共点,不符合题意,综上可得:【点睛】题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键.4、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是轴对称图形而不是中心对称图形;图3既是轴对称图形,又是中心对称图形.【点睛】本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.5、(1)见详解;(2)90,直径所对的圆周角是直角,BD【分析】(1)根据作图步骤作出图形即可;(2)根据题意填空,即可求解.【详解】解:(1)如图,CH为△ABC中AB边上的高;(2)证明:∵的直径,点上,___90_°.(__直径所对的圆周角是直角_)(填推理的依据),_BD__是的两条高线.所在直线交于点∴直线也是的高所在直线.边上的高.故答案为:90,直径所对的圆周角是直角,BD【点睛】本题考查了圆周角定理的推理,三角形的三条高线相交于一点等知识,熟知两个定理,并根据题意灵活应用是解题关键. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题,共26页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    初中数学第24章 圆综合与测试随堂练习题:

    这是一份初中数学第24章 圆综合与测试随堂练习题,共29页。

    初中数学沪科版九年级下册第24章 圆综合与测试测试题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试测试题,共27页。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map