搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新沪科版九年级数学下册第24章圆必考点解析试题(含详细解析)

    2021-2022学年最新沪科版九年级数学下册第24章圆必考点解析试题(含详细解析)第1页
    2021-2022学年最新沪科版九年级数学下册第24章圆必考点解析试题(含详细解析)第2页
    2021-2022学年最新沪科版九年级数学下册第24章圆必考点解析试题(含详细解析)第3页
    还剩27页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试精练

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试精练,共30页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是(      A.60 B.90 C.120 D.1802、如图图案中,不是中心对称图形的是(    A. B. C. D.3、下面的图形中既是轴对称图形又是中心对称图形的是(    A. B. C. D.4、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为(    A.25° B.80° C.130° D.100°5、如图,AB的直径,弦CDAB于点P,则CD的长为(    A. B. C. D.86、如图,四边形内接于,如果它的一个外角,那么的度数为(    A. B. C. D.7、下列说法正确的个数有(    ①方程的两个实数根的和等于1;②半圆是弧;③正八边形是中心对称图形;④“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;⑤如果反比例函数的图象经过点,则这个函数图象位于第二、四象限.A.2个 B.3个 C.4个 D.5个8、在△ABC中,,点OAB中点.以点C为圆心,CO长为半径作⊙C,则⊙CAB的位置关系是(    A.相交 B.相切C.相离 D.不确定9、在下列图形中,既是中心对称图形又是轴对称图形的是(   A.  B. C.  D.10、如图,在RtABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DEAC边于点F,则图中阴影部分的面积为(    A.3 B.1 C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:(1)如图(1)已知,点PBC边所在的直线l上移动,小方发现AP的最小值是______;(2)如图(2)在直角中,,点DCB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是______.2、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______. 3、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).4、在平面直角坐标系中,A(-1,0),B(2,0),∠OCB=30°,D为线段BC的中点,线段AD交线段OC于点E,则△AOE面积的最大值为___________5、如图,PAPB的切线,切点分别为AB.若,则AB的长为______.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,对于点POQ给出如下定义:若OQPOPQPO≤2,我们称点P是线段OQ的“潜力点”已知点O(0,0),Q(1,0)(1)在P1(0,-1),P2),P3(-1,1)中是线段OQ的“潜力点”是_____________;(2)若点P在直线yx上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;(3)直线y=2xbx轴交于点M,与y轴交于点N,当线段MN上存在线段OQ 的“潜力点”时,直接写出b的取值范围2、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.3、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PBAB,∠PBA=∠C(1)求证:PB是⊙O的切线;(2)连接OP,若OPBC,且OP=8,⊙O的半径为3,求BC的长.4、如图,AB为⊙O的切线,B为切点,过点BBCOA,垂足为点E,交⊙O于点C,连接CO并延长COAB的延长线交于点D,连接AC(1)求证:AC为⊙O的切线;(2)若⊙O半径为2,OD=4.求线段AD的长.5、如图,在⊙O中,点E是弦CD的中点,过点OE作直径ABAEBE),连接BD,过点CCFBDAB于点G,交⊙O于点F,连接AF.求证:AGAF -参考答案-一、单选题1、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.故选C.【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.2、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.3、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A.【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.4、D【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD内接于⊙O∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圆周角定理得,∠AOC=2∠B=100°,故选:D.【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.5、A【分析】过点于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点于点,连接 AB的直径,中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.6、D【分析】由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.【详解】∵四边形内接于又∵故选:D.【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.7、B【分析】根据所学知识对五个命题进行判断即可.【详解】1、,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3、八边形绕中心旋转180°以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误综上所述,正确个数为3故选B【点睛】本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键.8、B【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断的切线,进而可得⊙CAB的位置关系【详解】解:连接,,点OAB中点.CO为⊙C的半径,的切线,CAB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.9、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.10、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设相交于点旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.二、填空题1、10    5    【分析】(1)如图,作AHBCH.根据垂线段最短,求出AH即可解决问题.(2)如图,在AB上取一点K,使得AKAC,连接CKDK.由△PAC≌△DAKSAS),推出PCDK,易知KDBC时,KD的值最小,求出KD的最小值即可解决问题.【详解】解:如图作AHBCHABAC=20,根据垂线段最短可知,当APAH重合时,PA的值最小,最小值为10.AP的最小值是10;(2)如图,在AB上取一点K,使得AKAC,连接CKDK∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK∴∠PAC=∠DAKPADACAKA∴△PAC≌△DAKSAS),PCDKKDBC时,KD的值最小, 是等边三角形, PC的最小值为5.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题.2、6【分析】如图,连接OAOBOCODOEOF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.【详解】解:如图,连接OAOBOCODOEOF∵正六边形ABCDEFABBCCDDEEFFA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,的周长为的半径为正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.3、20【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.【详解】∵矩形ABCD绕点A顺时针旋转到矩形ABCD′的位置,∴∠ADC=∠D=90°,∠DAD′=α∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,α=20°.故答案为20.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.4、【分析】过点轴,交于点,根据中位线定理可得,设点轴的距离为G,则△AOE边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可.【详解】解:过点轴,交于点A(-1,0),B(2,0),D为线段BC的中点,轴,设点轴的距离为则△AOE边上的高的外接圆,则当点位于图中处时,最大,因为为等边三角形,,,故答案为:.【点睛】本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键.5、3【分析】由切线长定理和,可得为等边三角形,则【详解】解:连接,如下图:分别为的切线,为等腰三角形,为等边三角形,故答案为:3.【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.三、解答题1、(1);(2);(3)【分析】(1)分别计算出OQPOPQ的长度,比较即可得出答案;(2)先判断点P在以O为圆心,1为半径的圆外且点P在线段OQ垂直平分线的左侧,结合PO≤2,点P在以O为圆心,2为半径的圆上或圆内,可得点P在如图所示的线段AB上(不包含点B),过轴,过轴,垂足分别为 再根据图形的性质求解 从而可得答案;(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而POPQ,点P在线段OQ垂直平分线的左侧,再分两种情况讨论:当时,当时,分别画出两种情况下的临界直线 再根据临界直线经过的特殊点求解的值,再确定范围即可.【详解】解:(1) O(0,0),Q(1,0), P1(0,-1),P2),P3(-1,1) 不满足OQPOPQPO≤2,所以不是线段OQ的“潜力点”,同理: 所以不满足OQPOPQPO≤2,所以不是线段OQ的“潜力点”,同理: 所以满足:OQPOPQPO≤2,所以是线段OQ的“潜力点”,故答案为:P3(2)∵点P为线段OQ的“潜力点”,OQPOPQPO≤2,OQPO∴点P在以O为圆心,1为半径的圆外POPQ∴点P在线段OQ垂直平分线的左侧,而的垂直平分线为: PO≤2,∴点P在以O为圆心,2为半径的圆上或圆内又∵点P在直线yx上,∴点P在如图所示的线段AB上(不包含点B轴,过轴,垂足分别为 由题意可知△BOC和 △AOD是等腰三角形, ∴-xp<-(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,POPQ,点P在线段OQ垂直平分线的左侧时,时, 即函数解析式为: 此时 与半径为2的圆相切于时,则 时,如图,同理可得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,POPQ,点P在线段OQ垂直平分线的左侧,同理:当 直线为 在直线上,此时 时, 则 所以此时: 综上:的范围为:1<bb<-1【点睛】本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.2、2+【分析】连接ACCMAB,过点CCHOAH,设OC=a.利用勾股定理构建方程解决问题即可.【详解】解:连接ACCMAB,过点CCHOAH,设OC=a∵∠AOB=90°,AB是直径,A(-4,0),B(0,2),∵∠AMC=2∠AOC=120°,RtCOH中,RtACH中,AC2=AH2+CH2a=2+ 或2-(因为OCOB,所以2-舍弃),OC=2+故答案为:2+【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.3、(1)见解析(2)【分析】(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;(2)证明,得出对应边成比例,即可求出的长.(1)证明:连接,如图所示:的直径,的切线;(2)解:的半径为【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.4、(1)见解析;(2)4【分析】(1)连接OB,证明△AOB≌△AOCSSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;(2)在Rt△BOD中,勾股定理求得BD,根据sinD,代入数值即可求得答案【详解】解:(1)连接OBAB是⊙O的切线,OBAB即∠ABO=90°,BC是弦,OABCCEBEACAB在△AOB和△AOC中,∴△AOB≌△AOCSSS),∴∠ACO=∠ABO=90°,ACOCAC是⊙O的切线;(2)在Rt△BOD中,由勾股定理得,BD=2∵sinD,⊙O半径为2,OD=4.解得AC=2ADBD+AB=4【点睛】本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.5、见解析【分析】由题意易得ABCD,则有,由平行线的性质可得,然后可得,进而问题可求证.【详解】证明:∵AB为⊙O的直径,点E是弦CD的中点,ABCDCFBD【点睛】本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周角定理是解题的关键. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试精练:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试精练,共32页。试卷主要包含了如图,一个宽为2厘米的刻度尺,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试测试题:

    这是一份沪科版九年级下册第24章 圆综合与测试测试题,共38页。试卷主要包含了如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试精练:

    这是一份沪科版九年级下册第24章 圆综合与测试精练,共34页。试卷主要包含了等边三角形等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map