终身会员
搜索
    上传资料 赚现金

    2021-2022学年最新沪科版九年级数学下册第24章圆专题测评试题(含详细解析)

    立即下载
    加入资料篮
    2021-2022学年最新沪科版九年级数学下册第24章圆专题测评试题(含详细解析)第1页
    2021-2022学年最新沪科版九年级数学下册第24章圆专题测评试题(含详细解析)第2页
    2021-2022学年最新沪科版九年级数学下册第24章圆专题测评试题(含详细解析)第3页
    还剩28页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试课时练习

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试课时练习,共31页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。


    沪科版九年级数学下册第24章圆专题测评

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、计算半径为1,圆心角为的扇形面积为(   

    A. B. C. D.

    2、若的圆心角所对的弧长是,则此弧所在圆的半径为(   

    A.1 B.2 C.3 D.4

    3、如图,ABCD是⊙O的弦,且,若,则的度数为(   

    A.30° B.40° C.45° D.60°

    4、如图,在Rt△ABC中,,以边上一点为圆心作,恰与边分别相切于点,则阴影部分的面积为(   

    A. B. C. D.

    5、下列图形中,既是轴对称图形又是中心对称图形的是(  )

    A. B. 

    C.  D.

    6、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是(   

    A.50° B.70° C.110° D.120°

    7、点P(-3,1)关于原点对称的点的坐标是(   

    A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)

    8、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是(   

    A. B.1 C.2 D.

    9、下列图形中,可以看作是中心对称图形的是(   

    A. B. C. D.

    10、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是(   

    A.1 B. C. D.2

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,点C是半圆上一动点,以BC为边作正方形BCDE(使在正方形内),连OE,若AB=4cm,则OE的最大值为_____cm.

    2、如图,分别与相切于AB两点,若,则的度数为________.

    3、如图,将△ABC绕点A顺时针旋转得到△ADE,若∠DAE=110°,∠B=40°,则∠C的度数为________.

    4、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是________

    5、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,抛物线y=-x+2与x轴负半轴交于点A,与y轴交于点B

    (1)求AB两点的坐标;

    (2)如图1,点Cy轴右侧的抛物线上,且ACBC,求点C的坐标;

    (3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点ABO的对应点分别是点DEF),DE两点刚好在抛物线上.

    ①求点F的坐标;

    ②直接写出点P的坐标.

     

    2、阅读下列材料,完成相应任务:如图①,是⊙O的内接三角形,是⊙O的直径,平分交⊙O于点,连接,过点作⊙O的切线,交的延长线于点.则.下面是证明的部分过程:

    证明:如图②,连接

    是⊙O的直径,

    ①________.(1)

    为⊙O的切线,

    ,(2)

    由(1)(2)得,②________________.

    平分

    ③________,

    任务:

    (1)请按照上面的证明思路,补全证明过程:①________,②________,③________;

    (2)若,求的长.

    3、如图,中,,连接,点MNP分别是的中点.

    (1)请你判断的形状,并证明你的结论.

    (2)将绕点A旋转,若,请直接写出周长的最大值与最小值.

    4、如图,在RtABC中,∠B=90°,∠BAC的平分线ADBC于点D,点EAC上,以AE为直径的⊙O经过点D

    (1)求证:

    BC是⊙O的切线;

    (2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.

    5、如图,已知的直径,的切线,C为切点,于点E平分

    (1)求证:

    (2)求的长.

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    直接根据扇形的面积公式计算即可.

    【详解】

    故选:B.

    【点睛】

    本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.

    2、C

    【分析】

    先设半径为r,再根据弧长公式建立方程,解出r即可

    【详解】

    设半径为r

    则周长为2πr

    120°所对应的弧长为

    解得r=3

    故选C

    【点睛】

    本题考查弧长计算,牢记弧长公式是本题关键.

    3、B

    【分析】

    由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.

    【详解】

    解:∵

    故选:B.

    【点睛】

    题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.

    4、A

    【分析】

    连结OC,根据切线长性质DC=ACOC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可.

    【详解】

    解:连结OC

    ∵以边上一点为圆心作,恰与边分别相切于点A,

    DC=ACOC平分∠ACD

    ∴∠ACD=90°-∠B=60°,

    ∴∠OCD=∠OCA==30°,

    在Rt△ABC中,AC=ABtanB=3×

    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=

    OD=OA=1,DC=AC=

    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,

    S阴影=

    故选择A.

    【点睛】

    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.

    5、B

    【详解】

    解:A.是轴对称图形,不是中心对称图形,故不符合题意;

    B.既是轴对称图形,又是中心对称图形,故符合题意;

    C.不是轴对称图形,是中心对称图形,故不符合题意;

    D.是轴对称图形,不是中心对称图形,故不符合题意.

    故选:B.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    6、B

    【分析】

    根据旋转可得,得

    【详解】

    解:

    绕点逆时针旋转得到△,使点的对应点恰好落在边上,

    故选:B.

    【点睛】

    本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.

    7、C

    【分析】

    据平面直角坐标系中任意一点Pxy),关于原点的对称点是(xy),然后直接作答即可.

    【详解】

    解:根据中心对称的性质,可知:点P3,1)关于原点O中心对称的点的坐标为(3,1).

    故选:C.

    【点睛】

    本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.

    8、A

    【分析】

    CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据∠BCH=30°求解即可.

    【详解】

    解:如图,取BC的中点G,连接MG

    ∵旋转角为60°,

    ∴∠MBH+∠HBN=60°,

    又∵∠MBH+∠MBC=∠ABC=60°,

    ∴∠HBN=∠GBM

    CH是等边△ABC的对称轴,

    HB=AB

    HB=BG

    又∵MB旋转到BN

    BM=BN

    在△MBG和△NBH中,

    ∴△MBG≌△NBHSAS),

    MG=NH

    根据垂线段最短,MGCH时,MG最短,即HN最短,

    此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,

    MG=CG=

    HN=

    故选A.

    【点睛】

    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.

    9、B

    【分析】

    把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.

    【详解】

    A.不是中心对称图形,故本选项不符合题意;

    B.是中心对称图形,故本选项符合题意;

    C.不是中心对称图形,故本选项不符合题意;

    D.不是中心对称图形,故本选项不符合题意.

    故选:B.

    【点睛】

    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    10、B

    【分析】

    利用三角函数及勾股定理求出BC、AB,连接CD,过点CCEABE,利用,求出BE,根据垂径定理求出BD即可得到答案.

    【详解】

    解: 在Rt中,

    BC=3,

    连接CD,过点CCEABE

    解得

    CB=CDCEAB

    故选:B

    【点睛】

    此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.

    二、填空题

    1、

    【分析】

    如图,连接ODOEOC,设DO与⊙O交于点M,连接CMBM,通过△OCD≌△OBESAS),可得OEOD,通过旋转观察如图可知当DOAB时,DO最长,此时OE最长,设DO与⊙O交于点M,连接CM,先证明△MED≌△MEB,得MDBM.再利用勾股定理计算即可.

    【详解】

    解:如图,连接ODOEOC,设DO与⊙O交于点M,连接CMBM

    ∵四边形BCDE是正方形,

    ∴∠BCD=∠CBE=90°,CDBCBEDE

    OBOC

    ∴∠OCB=∠OBC

    ∴∠BCD+∠OCB=∠CBE+∠OBC,即∠OCD=∠OBE

    ∴△OCD≌△OBESAS),

    OEOD

    根据旋转的性质,观察图形可知当DOAB时,DO最长,即OE最长,

    ∵∠MCBMOB×90°=45°,

    ∴∠DCM=∠BCM=45°,

    ∵四边形BCDE是正方形,

    CME共线,∠DEM=∠BEM

    在△EMD和△EMB中,

    ∴△MED≌△MEBSAS),

    DMBM=2(cm),

    OD的最大值=2+2,即OE的最大值=2+2;

    故答案为:(2+2)cm.

    【点睛】

    本题考查了正方形的性质、全等三角形的判定与性质,圆周角定理等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论.

    2、

    【分析】

    根据已知条件可得出,再利用圆周角定理得出即可.

    【详解】

    解:分别与相切于两点,

    故答案为:

    【点睛】

    本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.

    3、

    【分析】

    先根据旋转的性质求得,再运用三角形内角和定理求解即可.

    【详解】

    解:将△ABC绕点A顺时针旋转得到△ADE,∠DAE=110°

    故答案是:30°.

    【点睛】

    本题主要考查了旋转的性质、三角形内角和定理等知识点,灵活运用旋转的性质是解答本题的关键.

    4、

    【分析】

    由勾股定理求得圆锥母线长为,再由圆锥的侧面积公式即可得出圆锥侧面积为

    【详解】

    是一个圆锥在某平面上的正投影

    为等腰三角形

    ADBC

    中有

    由圆锥侧面积公式有

    故答案为:

    【点睛】

    本题考查了计算圆锥的侧面积,若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为,圆锥的侧面积为

    5、20

    【分析】

    先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.

    【详解】

    ∵矩形ABCD绕点A顺时针旋转到矩形ABCD′的位置,

    ∴∠ADC=∠D=90°,∠DAD′=α

    ∵∠ABC=90°,

    ∴∠BAD’=180°-∠1=180°-110°=70°,

    ∴∠DAD′=90°-70°=20°,

    α=20°.

    故答案为20.

    【点睛】

    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.

    三、解答题

    1、(1)A(-1,0),B(0,2);(2)点C的坐标();(3)①求点F的坐标(1,2);②点P的坐标(

    【分析】

    (1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;

    (2)设C的坐标为(x,-x+2),根据ACBC,得到,令t=-x,解方程即可;

    (3)①根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,根据BE都在抛物线上,则BE是对称点,从而确定点P在抛物线的对称轴上,点FBE上,且BEx轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;

    ②根据BE=3,∠BPE=90°,PB=PE,确定PBE的距离,即可写出点P的坐标.

    【详解】

    (1)令x=0,得y=2,

    ∴点B的坐标为B(0,2);

    y=0,得-x+2=0,

    解得

    ∵点Ax轴的负半轴;

    A点的坐标(-1,0);

    (2)设C的坐标为(x,-x+2),

    ACBCA(-1,0),B(0,2),

    A(-1,0),B(0,2),

    t=-x

    整理,得

    解得

    ∵点Cy轴右侧的抛物线上,

    此时y=

    ∴点C的坐标();

    (3)①如图,根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,

    BE都在抛物线上,

    BE是对称点,

    ∴点P在抛物线的对称轴上,点FBE上,且BEx轴,

    ∵抛物线的对称轴为直线x=B(0,2),

    ∴点E(3,2),BE=3,

    EF=BO=2,

    BF=1,

    ∴点F的坐标为(1,2);

    ②如图,设抛物线的对称轴与BE交于点M,交x轴与点N

    BE=3,

    BM=

    ∵∠BPE=90°,PB=PE

    PM=BM=

    PM=BM=

    PN=2-=

    ∴点P的坐标为().

    【点睛】

    本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键.

    2、(1);(2)

    【分析】

    (1)由是⊙O的直径,得到ODB.再由为⊙O的切线,得到,即可推出∠ODA=∠BDE,由角平分线的定义可得,由,得到,即可证明

    (2)在直角△ODE中利用勾股定理求解即可.

    【详解】

    解:(1)如图②,连接

    是⊙O的直径,

    ODB.(1)

    为⊙O的切线,

    ,(2)

    由(1)(2)得,∠ODA=∠BDE

    平分

    ODA

    故答案为:① ,② ,③

    (2)的切线,

    中,

    【点睛】

    本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.

    3、

    (1)是等腰直角三角形,证明见解析

    (2)周长最小值为。最大值为

    【分析】

    (1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;

    (2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题.

    (1)

    连接BD,CE,如图,

    ∴BD=CE,

    ∵点MNP分别是的中点

    //,PN//BD,PN=BD

    ∴PM=PN,

    ∵PN//BD

    ∴∠PNC=∠DBC

    ∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90°

    是等腰直角三角形;

    (2)

    由(1)知,是等腰直角三角形

    的周长为

    的周长为

    当BD最小时即点D在AB上,此时周长最小,

    ∵AB=8,AD=3

    ∴BD的最小值为AB-AD=8-3=5

    周长最小为

    当点D在BA的延长线上时,BD最大,此时周长最大,

    ∴BD=AB+AD=8+3=11

    周长最大为

    【点睛】

    此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键.

    4、(1)①见解析;②见解析;(2)

    【分析】

    (1)①连接OD,由角平分线的性质解得,再根据内错角相等,两直线平行,证明,继而由两直线平行,同旁内角互补证明即可解题;

    ②连接DE,由弦切角定理得到,再证明,由相似三角形对应边成比例解题;

    (2)证明是等边三角形,四边形DOAF是菱形,,结合扇形面积公式解题.

    【详解】

    解:(1)①连接OD

    是∠BAC的平分线

    是⊙O的切线;

    ②连接DE

    是⊙O的切线,

    是直径

    (2)连接DEODDFOF,

    设圆的半径为R

    F是劣弧AD的中点,

    OFDA中垂线

    DF=AF

    是等边三角形,四边形DOAF是菱形,

    【点睛】

    本题考查圆的综合题,涉及切线的判定与性质、平行四边形的性质、等边三角形的判定与性质、相似三角形的判定与性质、扇形面积等知识,综合性较强,有难度,掌握相关知识是解题关键.

    5、(1)90°;(2)AC=DE=1

    【分析】

    (1)如图,可知

    (2)可求出的长;可求出的长.

    【详解】

    解(1)证明如图所示,连接

    是直径,的切线,平分

    (2)解∵

    【点睛】

    本题考查了角平分线、勾股定理、等腰三角形的性质、三角形相似的判定等知识点.解题的关键在于判定三角形相似.

     

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试一课一练:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试一课一练,共38页。试卷主要包含了等边三角形等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试一课一练:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试一课一练,共27页。试卷主要包含了下列图形中,是中心对称图形的是,下列语句判断正确的是等内容,欢迎下载使用。

    初中数学第24章 圆综合与测试巩固练习:

    这是一份初中数学第24章 圆综合与测试巩固练习,共35页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map