终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新沪科版九年级数学下册第24章圆专项测试试题(含详细解析)

    立即下载
    加入资料篮
    2021-2022学年最新沪科版九年级数学下册第24章圆专项测试试题(含详细解析)第1页
    2021-2022学年最新沪科版九年级数学下册第24章圆专项测试试题(含详细解析)第2页
    2021-2022学年最新沪科版九年级数学下册第24章圆专项测试试题(含详细解析)第3页
    还剩26页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试课时训练

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时训练,共29页。
    沪科版九年级数学下册第24章圆专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积(    A.不变 B.面积扩大为原来的3倍C.面积扩大为原来的9倍 D.面积缩小为原来的2、下列图形中,既是轴对称图形又是中心对称图形的是(  )A. B. C.  D.3、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是(      ).A.90° B.100° C.120° D.150°4、如图,AB的直径,弦CDAB于点P,则CD的长为(    A. B. C. D.85、如图,CD的高,按以下步骤作图:(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于GH两点.(2)作直线GHAB于点E.(3)在直线GH上截取(4)以点F为圆心,AF长为半径画圆交CD于点P则下列说法错误的是(         A. B. C. D.6、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是(    A.50° B.70° C.110° D.120°7、如图,在中,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于(    A. B. C. D.8、下列汽车标志中既是轴对称图形又是中心对称图形的是(    A. B. C. D.9、的边经过圆心与圆相切于点,若,则的大小等于(    A. B. C. D.10、如图,的直径,弦,垂足为,若,则    A.5 B.8 C.9 D.10第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点D为边长是的等边△ABCAB左侧一动点,不与点AB重合的动点D在运动过程中始终保持∠ADB=120°不变,则四边形ADBC的面积S的最大值是 ____.2、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.3、如图,正方形ABCD的边长为1,⊙O经过点CCM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边ABAD于点GHBDCGCH分别交于点EF,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:HD=2BG;②∠GCH=45°;③HFEG四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).4、如图,正六边形ABCDEF内接于⊙O,若⊙O的周长为8π,则正六边形的边长为________. 5、已知正多边形的半径与边长相等,那么正多边形的边数是______.三、解答题(5小题,每小题10分,共计50分)1、如图,的两条切线,切点分别为,连接并延长交于点,过点的切线交的延长线于点于点(1)求证:四边形是矩形;(2)若,求的长..2、如图,在直角坐标系中,将△ABC绕点A顺时针旋转90°.(1)画出旋转后的△AB1C1,并写出B1C1的坐标;(2)求线段AB在旋转过程中扫过的面积.3、如图,已知弓形的长,弓高,(,并经过圆心O).(1)请利用尺规作图的方法找到圆心O(2)求弓形所在的半径的长.4、在等边中,将线段AB绕点A顺时针旋转得到线段AD(1)若线段DA的延长线与线段BC相交于点E(不与点BC重合),写出满足条件的α的取值范围;(2)在(1)的条件下连接BD,交CA的延长线于点F①依题意补全图形;②用等式表示线段AEAFCE之间的数量关系,并证明.5、如图,四边形的内接四边形,(1)求的度数.(2)求的度数. -参考答案-一、单选题1、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.【详解】设原来扇形的半径为r,圆心角为n∴原来扇形的面积为∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的∴变化后的扇形的半径为3r,圆心角为∴变化后的扇形的面积为∴扇形的面积不变.故选:A.【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.2、B【详解】解:A.是轴对称图形,不是中心对称图形,故不符合题意;B.既是轴对称图形,又是中心对称图形,故符合题意;C.不是轴对称图形,是中心对称图形,故不符合题意;D.是轴对称图形,不是中心对称图形,故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、D【分析】绕点逆时针旋转,根据旋转的性质得,则为等边三角形,得到,在中,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.【详解】解:为等边三角形,可将绕点逆时针旋转如图,连接为等边三角形,中,为直角三角形,且故选:D.【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.4、A【分析】过点于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点于点,连接 AB的直径,中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.5、C【分析】连接AFBF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.【详解】解:连接AFBF,由作法可知,FE垂直平分AB,故A正确;CD的高,,故B正确;,故C错误;∴∠AFE=45°,同理可得∠BFE=45°,∴∠AFB=90°,,故D正确;故选:C.【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.6、B【分析】根据旋转可得,得【详解】解:绕点逆时针旋转得到△,使点的对应点恰好落在边上,故选:B.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.7、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.【详解】解:连接CD,如图所示:∵点DAB的中点,在Rt△ACB中,由勾股定理可得故选D.【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.8、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接 与圆相切于点故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.10、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接的直径,弦的半径为,则中,解得故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题1、【分析】根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可.【详解】解:根据题意作等边三角形的外接圆,D在运动过程中始终保持∠ADB=120°不变,在圆上运动,当点运动到的中点时,四边形ADBC的面积S的最大值,过点的垂线交于点,如图:中,解得:过点的垂线交于故答案是:【点睛】本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质.2、35°【分析】根据旋转的性质可得∠AOD=∠BOC=30°,AODO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,∴∠AOD=∠BOC=30°,AODO∵∠AOC=100°,∴∠BOD=100°−30°×2=40°,ADO=∠A(180°−∠AOD)=(180°−30°)=75°,由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.故答案为:35°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.3、②③④【分析】根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCDGM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PCAC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.【详解】GH是⊙O的切线,M为切点,且CM是⊙O的直径,∴∠CMH=90°,∵四边形ABCD是正方形,∴∠CMH=∠CDH=90°,CM=CDCH=CH∴△CMH≌△CDHHD=HM,∠HCM=∠HCD同理可证,∴GM=GB,∠GCB=∠GCMGB+DH=GH,无法确定HD=2BG故①错误;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正确;∵△CMH≌△CDHBD是正方形的对角线,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC=∠DHF +∠HDF+∠HFD=180°,根据对角互补的四边形内接于圆,HFEG四点在同一个圆上,故③正确;∵正方形ABCD的边长为1,=1=,∠GAH=90°,AC=GH的中点P,连接PAGH=2PA=∴当PA取最小值时,有最大值,连接PCACPA+PCACPAAC- PC∴当PC最大时,PA最小,∵直径是圆中最大的弦,PC=1时,PA最小,∴当APC三点共线时,且PC最大时,PA最小,PA=-1,最大值为:1-(-1)=2-∴四边形CGAH面积的最大值为2∴④正确;故答案为: ②③④.【点睛】本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.4、4【分析】由周长公式可得⊙O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长.【详解】∵⊙O的周长为8π∴⊙O半径为4∵正六边形ABCDEF内接于⊙O∴正六边形ABCDEF中心角为∴正六边形ABCDEF为6个边长为4的正三角形组成的∴正六边形ABCDEF边长为4.故答案为:4.【点睛】本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键.5、六【分析】设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.【详解】解:设这个正多边形的边数为n∵正多边形的半径与边长相等,OA=OB=AB∴△OAB是等边三角形,∴∠AOB=60°,∴正多边形的边数是六,故答案为:六.【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.三、解答题1、(1)见详解;(2)7【分析】(1)根据切线的性质和矩形的判定定理即可得到结论;(2)根据切线长定理可得AB=ACBE=DE,再利用勾股定理即可求解.【详解】(1)证明:∵DE的两条切线,于点∴∠EFC=∠EDC=∠FCD=90°,∴四边形是矩形;(2)∵四边形是矩形,EF=CF=DE的两条切线,AB=ACBE=DEAB=AC=x,则AE=x+2,AF=x-2,中,解得:x=5,AC=5+2=7.【点睛】本题主要考查切线长定理和勾股定理以及矩形的判定定理,掌握切线长定理以及勾股定理是解题的关键.2、(1)作图见解析,;(2)【分析】(1)将绕点A顺时针旋转90°得,根据点A、B、C坐标,即可确定出点的坐标;(2)根据勾股定理求出AB的长,由扇形面积公式即可得出答案.【详解】(1)将绕点A顺时针旋转90°得如图所示:(2)由图可知:∴线段AB在旋转过程中扫过的面积为【点睛】本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键.3、(1)见解析(2)10【分析】(1)作BC的垂直平分线,与直线CD的交点即为圆心;(2)连接OA,根据勾股定理列出方程即可求解.(1)解:如图所示,点O即是圆心;(2)解:连接OA,并经过圆心O解得,答:半径为10.【点睛】本题考查了垂径定理和确定圆心,解题关键是熟练作图确定圆心,利用垂径定理和勾股定理求半径.4、(1);(2)①见解析;②AE=AF+CE,证明见解析.【分析】(1)根据“线段DA的延长线与线段BC相交于点E”可求解;(2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.【详解】(1)如图:AD只能在锐角∠EAF内旋转符合题意α的取值范围为:(2)补全图形如下:(3)AE=AF+CE证明:在AE上截取AH=AF,由旋转可得:AB=AD∴∠D=∠ABF∵△ABC为等边三角形,AB=AC,∠BAC=ACB=60°,AD=AC∵∠DAF=∠CAH∴△AFD≌△AHC∴∠AFD=∠AHC,∠D=∠ACH∴∠AFB=∠CHE∵∠AFB+∠ABF=∠ACH+∠HCE=60°,∴∠CHE+∠D=∠D+∠HCE=60°,∴∠CHE=∠HCECE=HEAE=AH+HE=AF+CE【点睛】本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.5、(1)70°;(2)103°【分析】(1)根据等弧所对的圆周角相等可得,得出,在三角形中利用三角形内角和定理求解即可得;(2)由圆周角定理可得,结合(1)中结论及图形可得:,代入求解即可.【详解】解:(1)中,(2)由圆周角定理,得【点睛】题目主要考查圆周角定理,三角形内角和定理,熟练掌握运用圆周角定理是解题关键. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试课时训练:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时训练,共26页。试卷主要包含了在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试测试题:

    这是一份沪科版九年级下册第24章 圆综合与测试测试题,共38页。试卷主要包含了如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试精练:

    这是一份沪科版九年级下册第24章 圆综合与测试精练,共34页。试卷主要包含了等边三角形等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map