【真题汇总卷】2022年四川省成都市中考数学第一次模拟试题(含答案详解)
展开2022年四川省成都市中考数学第一次模拟试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列关于x的二次三项式在实数范围内不能够因式分解的是( )
A.x2﹣3x+2 B.2x2﹣2x+1 C.2x2﹣xy﹣y2 D.x2+3xy+y2
2、某物体的三视图如图所示,那么该物体形状可能是( )
A.圆柱 B.球 C.正方体 D.长方体
3、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )
A.点 B.点 C.点 D.点
4、下列各数中,是无理数的是( )
A.0 B. C. D.3.1415926
5、方程的解是( ).
A. B. C., D.,
6、如图所示,,,,,则等于( )
A. B. C. D.
7、在 Rt 中,,如果,那么等于( )
A. B. C. D.
8、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )
A. B. C. D.
9、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).
A.7 B.6 C.5 D.4
10、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )
A.冬 B.奥 C.运 D.会
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一杯饮料,第一次倒去全部的,第二次倒去剩下的 ……如此下去,第八次后杯中剩下的饮料是原来的________.
2、如图,已知它们分别交直线于点和点,如果,,那么线段的长是_________
3、已知3m=a,3n=b,则33m+2n的结果是____.
4、在⊙O中,圆心角∠AOC=120°,则⊙O内接四边形ABCD的内角∠ABC=_____.
5、已知某函数的图象经过,两点,下面有四个推断:
①若此函数的图象为直线,则此函数的图象与直线平行;
②若此函数的图象为双曲线,则也在此函数的图象上;
③若此函数的图象为抛物线,且开口向下,则此函数图象一定与y轴的负半轴相交;
④若此函数的图象为抛物线,且开口向上,则此函数图象对称轴在直线左侧.
所有合理推断的序号是______.
三、解答题(5小题,每小题10分,共计50分)
1、解方程(2x+1)2=x(2x+1).
2、如图,在四边形ABCD中,对角线BD平分∠ABC,∠A=120°,∠C=60°,AB=17,AD=12.
(1)求证:AD=DC;
(2)求四边形ABCD的周长.
3、在平面直角坐标系中,对于点和,给出如下定义:若,则称点为点的“可控变点”
例如:点的“可控变点”为点,点的“可控变点”为点.
(1)点的“可控变点”坐标为 ;
(2)若点在函数的图象上,其“可控变点” 的纵坐标是7,求“可控变点” 的横坐标:
(3)若点在函数的图象上,其“可控变点” 的纵坐标的取值范围是,求的值.
4、如图,已知直线和直线外三点、、,按下列要求用尺规作图(不写作法,保留作图痕迹):
(1)作线段、射线;
(2)在射线上确定点,使得;
(3)在直线上确定点,使得点到点、点的距离之和最短.
5、综合与探究
如图,直线与轴,轴分别交于,两点,抛物线经过,两点,与轴的另一个交点为(点在点的左侧),抛物线的顶点为点.抛物线的对称轴与轴交于点.
(1)求抛物线的表达式及顶点的坐标;
(2)点M是线段上一动点,连接并延长交轴交于点,当时,求点的坐标;
(3)点是该抛物线上的一动点,设点的横坐标为,试判断是否存在这样的点,使,若存在,请直接写出的值;若不存在,请说明理由.
-参考答案-
一、单选题
1、B
【分析】
利用十字乘法把选项A,C分解因式,可判断A,C,利用一元二次方程根的判别式计算的值,从而可判断B,D,从而可得答案.
【详解】
解: 故A不符合题意;
令
所以在实数范围内不能够因式分解,故B符合题意;
故C不符合题意;
令
所以在实数范围内能够因式分解,故D不符合题意;
故选B
【点睛】
本题考查的是利用十字乘法分解因式,一元二次方程的根的判别式的应用,掌握“利用一元二次方程根的判别式判断二次三项式在实数范围内能否分解因式”是解本题的关键.
2、A
【分析】
根据主视图和左视图都是矩形,俯视图是圆,可以想象出只有圆柱符合这样的条件,因此物体的形状是圆柱.
【详解】
解:根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,
则该几何体是圆柱.
故选:A.
【点睛】
本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.熟悉简单的立体图形的三视图是解本题的关键.
3、B
【分析】
结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.
【详解】
∵点和,
∴坐标原点的位置如下图:
∵藏宝地点的坐标是
∴藏宝处应为图中的:点
故选:B.
【点睛】
本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.
4、B
【分析】
无限不循环小数叫做无理数,有限小数或无限循环小数叫做有理数,根据无理数的定义即可作出判断.
【详解】
A.0是整数,属于有理数,故本选项不合题意;
B.是无理数,故本选项符合题意;
C.是分数,属于有理数,故本选项不合题意;
D.3.1415926是有限小数,属于有理数,故本选项不合题意;
故选:B.
【点睛】
本题考查了无理数,掌握无理数的含义是解题的关键.
5、C
【分析】
先提取公因式x,再因式分解可得x(x-1)=0,据此解之可得.
【详解】
解:,
x(x-1)=0,
则x=0或x-1=0,
解得x1=0,x2=1,
故选:C.
【点睛】
本题考查了一元二次方程的解法,掌握用因式分解法解一元二次方程是关键.
6、C
【分析】
根据“SSS”证明△AOC≌△BOD即可求解.
【详解】
解:在△AOC和△BOD中
,
∴△AOC≌△BOD,
∴∠C=∠D,
∵,
∴=30°,
故选C.
【点睛】
本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
7、D
【分析】
直接利用锐角三角函数关系进而表示出AB的长.
【详解】
解:如图所示:
∠A=α,AC=1,
cosα=,
故AB=.
故选:D
【点睛】
此题主要考查了锐角三角函数关系,正确得出边角关系是解题关键.
8、C
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:48500000科学记数法表示为:48500000=.
故答案为:.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
9、A
【分析】
由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.
【详解】
由折叠的性质得,,
∴,,
∴,
∵,
∴,
∴,
在与中,
,
∴,
∴,,
设,则,
∴,
解得:,
∴,,
∴.
故选:A.
【点睛】
本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.
10、D
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“京”与“奥”是相对面,
“冬”与“运”是相对面,
“北”与“会”是相对面.
故选:D.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
二、填空题
1、
【分析】
采用枚举法,计算几个结果,从结果中寻找变化的规律.
【详解】
设整杯饮料看成1,列表如下:
次数 | 倒出量 | 剩余量 |
第1次 | ||
第2次 | ||
第3次 | ||
第4次 |
故第8次剩下的饮料是原来的.
故答案为:.
【点睛】
本题考查了有理数幂的运算,正确寻找变化的规律是解题的关键.
2、8
【分析】
根据平行线分线段成比例定理即可得.
【详解】
解:,
,
,
,
,
解得,
故答案为:8.
【点睛】
本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题关键.
3、a
【分析】
根据幂的乘方以及同底数幂的乘法解决此题.
【详解】
解:∵3m=a,3n=b,
∴33m+2n=33m•32n=(3m)3•(3n)2=a3b2.
故答案为:a3b2.
【点睛】
本题主要考查幂的乘方以及同底数幂的乘法的逆运算,熟练掌握幂的乘方以及同底数幂的乘法是解决本题的关键.
4、120°
【分析】
先根据圆周角定理求出∠D,然后根据圆内接四边形的性质求解即可.
【详解】
解:∵∠AOC=120°
∴∠D=∠AOC=60°
∵⊙O内接四边形ABCD
∴∠ABC=180°-∠D=120°.
故答案是120°.
【点睛】
本题主要考查了圆周角定理、圆内接四边形的性质等知识点,掌握圆内接四边形的性质是解答本题的关键.
5、①②④
【分析】
分别根据过A、B两点的函数是一次函数、二次函数时,相应的函数的性质进行判断即可.
【详解】
解:①过,两点的直线的关系式为y=kx+b,则
,
解得,
所以直线的关系式为y=x-1,
直线y=x-1与直线y=x平行,
因此①正确;
②过,两点的双曲线的关系式为,则,
所以双曲线的关系式为
当时,
∴也在此函数的图象上,
故②正确;
③若过,两点的抛物线的关系式为y=ax2+bx+c,
当它经过原点时,则有
解得,
对称轴x=-,
∴当对称轴0<x=-<时,抛物线与y轴的交点在正半轴,
当->时,抛物线与y轴的交点在负半轴,
因此③说法不正确;
④当抛物线开口向上时,有a>0,而a+b=1,即b=-a+1,
所以对称轴x=-=-=-,
因此函数图象对称轴在直线x=左侧,
故④正确,
综上所述,正确的有①②④,
故答案为:①②④.
【点睛】
本题考查一次函数、二次函数的图象和性质,待定系数法求函数的关系式,理解各种函数的图象和性质是正确判断的前提.
三、解答题
1、
【分析】
先移项,再提取公因式 利用因式分解法解方程即可.
【详解】
解:(2x+1)2=x(2x+1)
即
或
解得:
【点睛】
本题考查的是利用因式分解法解一元二次方程,掌握“提取公因式分解因式,再化为两个一次方程”是解本题的关键.
2、
(1)证明见解析;
(2)70.
【分析】
(1)在BC上取一点E,使BE=AB,连接DE,证得△ABD≌△EBD,进一步得出∠BED=∠A,利用等腰三角形的判定与性质与等量代换解决问题;
(2)首先判定△DEC为等边三角形,求得BC,进一步结合(1)的结论解决问题.
(1)
证明:在BC上取一点E,使BE=AB,连结DE.
∵BD平分∠ABC,
∴∠ABD=∠CBD.
在△ABD和△EBD中,
,
∴△ABD≌△EBD(SAS);
∴DE=AD=12,∠BED=∠A,AB=BE=17.
∵∠A=120°,
∴∠DEC=60°.
∵∠C=60°,
∴∠DEC=∠C,
∴DE=DC,
∴AD=DC.
(2)
∵∠C=60°,DE=DC,
∴△DEC为等边三角形,
∴EC=CD=AD.
∵AD=12,
∴EC=CD=12,
∴四边形ABCD的周长=17+17+12+12+12=70.
【点睛】
此题考查全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质,结合图形,灵活解答.
3、
(1)
(2)“可控变点” 的横坐标为3或
(3)
【分析】
(1)根据可控变点的定义,可得答案;
(2)根据可控变点的定义,可得函数解析式,根据自变量与函数值得对应关系,可得答案;
(3)根据可控变点的定义,可得函数解析式,根据自变量与函数值得对应关系,结合图象可得答案.
(1)
,
,
即点的“可控变点”坐标为;
(2)
由题意,得
的图象上的点的“可控变点”必在函数的图象上,如图1,
“可控变点” 的纵坐标的是7,
当时,解得,
当时,解得,
故答案为:3或;
(3)
由题意,得
y=-x2+16的图象上的点P的“可控变点”必在函数y′= 的图象上,如图2,
当x=-5时,x2-16=9,
∴-16<y′=x2-16≤9(x<0),
∴y′=-16在y′=-x2+16(x≥0)上,
∴-16=-x2+16,
∴x=4,
∴实数a的值为4.
【点睛】
本题考查了新定义,二次函数的图象与性质,利用可控变点的定义得出函数解析式是解题关键,又利用了自变量与函数值的对应关系.
4、
(1)见解析
(2)见解析
(3)见解析
【分析】
(1)根据直线和射线的定义作图即可;
(2)以点C为圆心,BC为半径画弧,与射线BC交于点D即可;
(3)根据两点之间,线段最短,连接AC,与直线l交于点E即可.
(1)
解:如图,线段AB,射线BC即为所求;
(2)
如图,点D即为所求;
(3)
如图,点E即为所求.
【点睛】
本题考查了作图-复杂作图、直线、射线、线段、线段的性质,解决本题的关键是掌握线段的性质.
5、(1),;(2);(3)存在,的值为4或
【分析】
(1)分别求出两点坐标代入抛物线即可求得a、c的值,将抛物线化为顶点式,即可得顶点的坐标;
(2)作轴于点,可证∽,从而可得,代入,,可求得,代入可得,从而可得点的坐标;
(3)由,可得,由两点坐标可得,所以,过点P作PQ⊥AB,分点P在x轴上方和下方两种情况即可求解.
【详解】
(1)当时,得,
∴点的坐标为(0,4),
当时,得,解得:,
∴点的坐标为(6,0),
将两点坐标代入,得
解,得
∴抛物线线的表达式为
∵
∴顶点坐标为.
(2)作轴于点,
∵,,
∴∽.
∴.
∴.
∴
当时,
∴.
∴点的坐标为.
(3)∵,,
∴,
∵点的坐标为(6,0),点的坐标为(0,4),
∴,
∴,
过点P作PQ⊥AB,
当点P在x轴上方时,
解得m=4符合题意,
当点P在x轴下方时,
解得m=8符合题意,
∴存在,的值为4或.
【点睛】
本题考查了抛物线解析式的求法,抛物线的性质,三角形相似的判定及性质,三角函数的应用,解题的关键是准确作出辅助线,利用数形结合的思想列出相应关系式.
【历年真题】2022年四川省成都市中考数学三年高频真题汇总 卷(Ⅲ)(含答案及详解): 这是一份【历年真题】2022年四川省成都市中考数学三年高频真题汇总 卷(Ⅲ)(含答案及详解),共26页。试卷主要包含了下列说法中,正确的是,下列命题,是真命题的是等内容,欢迎下载使用。
【历年真题】2022年四川省成都市中考数学历年真题汇总 卷(Ⅲ)(含答案详解): 这是一份【历年真题】2022年四川省成都市中考数学历年真题汇总 卷(Ⅲ)(含答案详解),共23页。试卷主要包含了已知的两个根为等内容,欢迎下载使用。
【真题汇总卷】2022年四川省成都市中考数学模拟考试 A卷(含答案及详解): 这是一份【真题汇总卷】2022年四川省成都市中考数学模拟考试 A卷(含答案及详解),共27页。试卷主要包含了已知点D等内容,欢迎下载使用。