【真题汇总卷】2022年北京市中考数学第一次模拟试题(含答案详解)
展开2022年北京市中考数学第一次模拟试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知4个数:,,,,其中正数的个数有( )
A.1 B. C.3 D.4
2、深圳湾“春笋”大楼的顶部如图所示,则该几何体的主视图是( )
A. B. C. D.
3、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )
A.21 B.25 C.28 D.29
4、文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.
小张:该工艺品的进价是每个22元;
小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.
经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?
设这种工艺品的销售价每个应降低x元,由题意可列方程为( )
A.(38﹣x)(160+×120)=3640
B.(38﹣x﹣22)(160+120x)=3640
C.(38﹣x﹣22)(160+3x×120)=3640
D.(38﹣x﹣22)(160+×120)=3640
5、如图,在中,,,则的值为( )
A. B. C. D.
6、下图中能体现∠1一定大于∠2的是( )
A. B.
C. D.
7、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )
A. B. C. D.
8、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第1次操作;做第2次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续操作下去,从数串2,9,7开始操作第2022以后所产生的那个新数串的所有数之和是( )
A.20228 B.10128 C.5018 D.2509
9、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知S△AFE=1,则S△ABD的值是( )
A.9 B.10 C.12 D.14
10、下列利用等式的性质,错误的是( )
A.由,得到 B.由,得到
C.由,得到 D.由,得到
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,C是线段AB延长线上一点,D为线段BC上一点,且,E为线段AC上一点,,若,则_________.
2、一次函数y=﹣x+1的图象与反比例函数y=的图象交点的纵坐标为2,当﹣3<x<﹣1时,反比例函数y=中y的取值范围是 _____.
3、已知点 P (m + 2, 3)和点 Q (2, n - 4)关于原点对称,则 m + n =_____.
4、计算:_________,_________,_________.分解因式:_________,_________,________.
5、已知一个多边形的内角和比外角和多180°,则它的边数为______.
三、解答题(5小题,每小题10分,共计50分)
1、(综合与实践)现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD,FG和灯柱AB如图①所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:
①根据光源确定榕树在地面上的影子;
②测量出相关数据,如高度,影长等;
③利用相似三角形的相关知识,可求出所需要的数据.
根据上述内容,解答下列问题:
(1)已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;
(2)如图①,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;
(3)无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM的高度为 米.
2、如图△ABC中,∠B=60°,∠BAC与∠ACB的角平分线AD、CE交于O.求证:AC=AE+DC.
3、观察以下等式:
,,,,
(1)依此规律进行下去,第5个等式为______,猜想第n个等式为______;
(2)请利用分式的运算证明你的猜想.
4、已知:如图,在中,是边边上的高,是中线,是的中点,.求证:.
5、如图,D、E分别是AC、AB上的点,△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,求AE、BE的长.
-参考答案-
一、单选题
1、C
【分析】
化简后根据正数的定义判断即可.
【详解】
解:=1是正数,=2是正数,=1.5是正数,=-9是负数,
故选C.
【点睛】
本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.
2、A
【分析】
根据简单几何体的三视图的意义,得出从正面看所得到的图形即可.
【详解】
解:从正面看深圳湾“春笋”大楼所得到的图形如下:
故选:A.
【点睛】
本题考查简单几何体的三视图,理解视图的意义,掌握简单几何体三视图的画法是正确解答的关键.
3、D
【分析】
根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.
【详解】
解:∵第1个图形中圆圈数量5=1+4×1,
第2个图形中圆圈数量9=1+4×2,
第3个图形中圆圈数量13=1+4×3,
……
∴第n个图形中圆圈数量为1+4×n=4n+1,
当n=7时,圆圈的数量为29,
故选:D.
【点睛】
本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.
4、D
【分析】
由这种工艺品的销售价每个降低x元,可得出每个工艺品的销售利润为(38-x-22)元,销售量为(160+×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x的一元二次方程,此题得解.
【详解】
解:∵这种工艺品的销售价每个降低x元,
∴每个工艺品的销售利润为(38-x-22)元,销售量为(160+×120)个.
依题意得:(38-x-22)(160+×120)=3640.
故选:D.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
5、C
【分析】
由三角函数的定义可知sinA=,可设a=5k,c=13k,由勾股定理可求得b,再利用余弦的定义代入计算即可.
【详解】
解:在直角三角形ABC中,∠C=90°
∵sinA=,
∴可设a=5k,c=13k,由勾股定理可求得b=12k,
∴cosA=,
故选:C.
【点睛】
本题主要考查了三角函数的定义,掌握正弦、余弦函数的定义是解题的关键.
6、C
【分析】
由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.
【详解】
解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;
B、如图,
若两线平行,则∠3=∠2,则
若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;
C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;
D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.
故选:C.
【点睛】
本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.
7、B
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:641200用科学记数法表示为:641200=,
故选择B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、B
【分析】
根据题意分别求得第一次操作,第二次操作所增加的数,可发现是定值5,从而求得第101次操作后所有数之和为2+7+9+2022×5=10128.
【详解】
解:∵第一次操作增加数字:-2,7,
第二次操作增加数字:5,2,-11,9,
∴第一次操作增加7-2=5,
第二次操作增加5+2-11+9=5,
即,每次操作加5,第2022次操作后所有数之和为2+7+9+2022×5=10128.
故选:B.
【点睛】
此题主要考查了数字变化类,关键是找出规律,要求要有一定的解题技巧,解题的关键是能找到所增加的数是定值5.
9、C
【分析】
过点F作MN⊥AD于点M,交BC于点N,证明△AFE∽△CFB,可证得,得MN=4MF,再根据三角形面积公式可得结论.
【详解】
解:过点F作MN⊥AD于点M,交BC于点N,连接BD,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC
∴△AFE∽△CFB
∴
∵DE=2AE
∴AD=3AE=BC
∴
∴,即
又
∴
∴
故选:C
【点睛】
本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.
10、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
二、填空题
1、3
【分析】
设BD=a,AE=b,则CD=2a,CE=2b,根据AB=AE+BE=AE+DE-BD代入计算即可.
【详解】
设BD=a,AE=b,
∵,,
∴CD=2a,CE=2b,
∴DE=CE-CD=2b-2a=2即b-a=1,
∴AB=AE+BE=AE+DE-BD=2+b-a=2+1=3,
故答案为:3.
【点睛】
本题考查了线段的和与差,正确用线段的和差表示线段是解题的关键.
2、<y<2
【分析】
把一个交点的纵坐标是2代入y=-x+1求出横坐标为-1,把(-1,2)代入y=求出k,令-3<x<-1,求出y=的取值范围,即可求出y的取值范围.
【详解】
解:令y=2,则2=-x+1,
∴x=-1,
把(-1,2)代入y=,
解得:k=-2,
∴反比例函数为y=,
当x=-3时,代入y=得y=,
∴x=-3时反比例函数的值为:,
当x=-1时,代入y=得y=2,
又知反比例函数y=在-3<x<-1时,y随x的增大而增大,
即当-3<x<-1时反比例函数y的取值范围为:<y<2.
【点睛】
本题考查了反比例函数与一次函数的交点及正比例函数与反比例函数的性质,难度不大,关键是掌握用待定系数法求解函数的解析式.
3、-3
【分析】
求解的值,然后代入求解即可.
【详解】
解:由题意知
解得
∴
故答案为:.
【点睛】
本题考查了关于原点对称的点坐标的特征.解题的关键在于明确关于原点对称的点坐标的横、纵坐标均互为相反数.
4、
【分析】
根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可
【详解】
解:计算:,,.
分解因式:,,.
故答案为:;;;;;
【点睛】
本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键.
5、5
【分析】
设边数为n,由题意知多边形的内角和为,用边数表示为计算求解即可.
【详解】
解:设边数为
∵多边形的外角和为
∴多边形的内角和为
∴
解得
故答案为:5.
【点睛】
本题考查了多边形的内角和与外角和.解题的关键在于求解多边形的内角和.
三、解答题
1、
(1)见解析
(2)
(3)
【分析】
(1)根据题意画出图形;
(2)证明△ECD∽△EPB,根据相似三角形的性质列出比例式,把已知数据代入计算即可;
(3)根据△BCD∽△BEF求出BD,再根据△ACD∽△AMF求出MF,进而求出EM.
【小题1】
解:图①中GH即为所求;
【小题2】
∵CD∥PB,
∴△ECD∽△EPB,
∴,即,
解得:PB=9,
∵FG∥PB,
∴△HFG∽△HPB,
∴,即,
解得:FG=,
答:榕树FG的高度为米;
【小题3】
∵CD∥EF,
∴△BCD∽△BEF,
∴,即,
解得:BD=75,
∵CD∥EF,
∴△ACD∽△AMF,
∴,即,
解得:MF=,
∴EM=EF-MF=70-=(米),
故答案为:.
【点睛】
本题考查的相似三角形的判定和性质的应用,掌握相似三角形的判定定理和性质定理是解题的关键.
2、见解析
【分析】
在AC上截取CF=CD,由角平分线的性质和三角形内角和定理可求∠AOC=120°,∠DOC=∠AOE=60°,由“SAS”可证△CDO≌△CFO,可得∠COF=∠COD=60°,由“ASA”可证△AOF≌△AOE,可得AE=AF,即可得结论.
【详解】
解:证明:如图,在AC上截取CF=CD,
∵∠B=60°,
∴∠BAC+∠BCA=120°,
∵∠BAC、∠BCA的角平分线AD、CE相交于O,
∴∠BAD=∠OAC=∠BAC,∠DCE=∠OCA=∠BCA,
∴∠OAC+∠OCA=(∠BAC+∠BCA)=60°,
∴∠AOC=120°,∠DOC=∠AOE=60°,
∵CD=CF,∠OCA=∠DCO,CO=CO,
∴△CDO≌△CFO(SAS),
∴∠COF=∠COD=60°,
∴∠AOF=∠EOA=60°,且AO=AO,∠BAD=∠DAC,
∴△AOF≌△AOE(ASA),
∴AE=AF,
∴AC=AF+FC=AE+CD.
【点睛】
本题考查了全等三角形的判定与性质,添加恰当辅助线构造全等三角形是本题的关键.
3、
(1),
(2)见解析
【分析】
(1)根据题目中给出的等式,即可写出第5个等式,并写出第的等式;
(2)根据分式的乘法和加法可以证明猜想的正确性.
(1)
解:由题目中的等式可得,
第5个等式为:,第个等式是,
故答案为:,;
(2)
证明:左边,
右边,
左边右边,
故猜想正确.
【点睛】
本题考查分式的混合运算、数字的变化类,解答本题的关键是明确题意,写出相应的等式,并证明猜想的正确性.
4、见详解.
【分析】
连接DE,由中垂线的性质可得DE=DC,再由直角三角形斜边上的中线等于斜边的一半得到DE=BE,进而得到CDAB.
【详解】
证明:如图,连接DE,
∵F是CE的中点,DF⊥CE,
∴DF垂直平分CE,
∴DE=DC
∵AD⊥BC,CE是边AB上的中线,
∴DE是Rt△ABD斜边上的中线,即DE=BE=AB,
∴CD =DE=AB.
【点睛】
本题考查了中垂线的性质,直角三角形斜边上的中线的性质,推出DE=CD是解决本题的关键.
5、AE=8,BE=10.
【分析】
由△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,根据相似三角形的对应边成比例,即可求得答案.
【详解】
解:∵△ADE∽△ABC,
∴,
∵DE=8,BC=24,CD=18,AD=6,
∴AC=AD+CD=24,
∴AE=8,AB=18,
∴BE=AB-AE=10.
【点睛】
本题考查了相似三角形的性质.注意掌握相似三角形的对应边成比例定理的应用是解此题的关键.
【真题汇总卷】2022年北京市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解): 这是一份【真题汇总卷】2022年北京市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共18页。试卷主要包含了下列图形是中心对称图形的是.,已知4个数,如图,在中,,,则的值为,如图,点C等内容,欢迎下载使用。
【真题汇总卷】2022年北京市顺义区中考数学真题模拟测评 (A)卷(含答案及详解): 这是一份【真题汇总卷】2022年北京市顺义区中考数学真题模拟测评 (A)卷(含答案及详解),共21页。
【真题汇总卷】2022年北京市中考数学三年真题模拟 卷(Ⅱ)(含答案详解): 这是一份【真题汇总卷】2022年北京市中考数学三年真题模拟 卷(Ⅱ)(含答案详解),共21页。试卷主要包含了在以下实数中,已知圆O的半径为3,AB,若,,且a,b同号,则的值为,下列利用等式的性质,错误的是等内容,欢迎下载使用。