【真题汇总卷】2022年四川省成都市中考数学模拟考试 A卷(含答案及详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知的两个根为、,则的值为( )
A.-2B.2C.-5D.5
2、如图所示,,,,,则等于( )
A.B.C.D.
3、若点P位于平面直角坐标系第四象限,且点P到x轴的距离是1,到y轴的距离是2,则点P的坐标为( )
A.B.C.D.
4、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )
A.B.C.D.
5、已知点D、E分别在的边AB、AC的反向延长线上,且ED∥BC,如果AD:DB=1:4,ED=2,那么BC的长是( )
A.8B.10C.6D.4
6、根据以下程序,当输入时,输出结果为( )
A.B.C.D.
7、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是( )
A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形
B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形
C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形
D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
8、如图,点 是 的角平分线 的中点, 点 分别在 边上,线段 过点 , 且 ,下列结论中, 错误的是( )
A.B.C.D.
9、如图,表示绝对值相等的数的两个点是( )
A.点C与点BB.点C与点DC.点A与点BD.点A与点D
10、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )
A.y=(x+3)2+5B.y=(x﹣3)2+5C.y=(x+5)2+3D.y=(x﹣5)2+3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行.反比例函数y=kx(k≠0)的图象,与大正方形的一边交于点A(32,4),且经过小正方形的顶点B.求图中阴影部分的面积为 _____.
2、如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=34°15',则等于___.
3、已知圆弧所在圆的半径为36cm.所对的圆心角为60°,则该弧的长度为______cm.
4、如图,△OA1B1,△A1A2B2,△A2A3B3,⋯是分别以A1,A2,A3,…,为直角顶点且一条直角边在x轴正半轴上的等腰直角三角形,其斜边中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…,均在反比例函数y=4x(x>0)的图象上,则C1的坐标是_;y1+y2+y3+…+y2022的值为___.
5、如图,在▱ABCD中,AB=8,AD=6,E为AD延长线上一点,且DE=4,连接BE,BE交CD于点F,则CF=_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知直线和直线外三点、、,按下列要求用尺规作图(不写作法,保留作图痕迹):
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)作线段、射线;
(2)在射线上确定点,使得;
(3)在直线上确定点,使得点到点、点的距离之和最短.
2、如图,在中,,D是延长线上的一点,E是上的一点.连接.如果.求证:.
3、如图,是内部的一条射线,是内部的一条射线,是内部的一条射线.
(1)如图1,、分别是、的角平分线,已知,,求的度数;
(2)如图2,若,,且,求的度数.
4、在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足.
(1)求点A和点B的坐标;
(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:
(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标.
5、(1).
(2).
-参考答案-
一、单选题
1、B
【分析】
直接运用一元二次方程根与系数的关系求解即可.
【详解】
解:∵的两个根为、,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴
故选:B
【点睛】
本题主要考查了一元二次方程根与系数的关系,若、为一元二次方程的两个实数根,则有,.
2、C
【分析】
根据“SSS”证明△AOC≌△BOD即可求解.
【详解】
解:在△AOC和△BOD中
,
∴△AOC≌△BOD,
∴∠C=∠D,
∵,
∴=30°,
故选C.
【点睛】
本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
3、D
【分析】
第四象限中横坐标为正,纵坐标为负,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,进而可表示出点坐标.
【详解】
解:由题意知点的横坐标为2,纵坐标为
∴点的坐标为
故选D.
【点睛】
本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.
4、B
【分析】
根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.
【详解】
解:∵ADBC,
∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,
∴,故A正确,不符合题意;
∵ADBC,
∴△DOE∽△BOF,
∴,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,故B错误,符合题意;
∵ADBC,
∴△AOD∽△COB,
∴,
∴,故C正确,不符合题意;
∴ ,
∴,故D正确,不符合题意;
故选:B
【点睛】
本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
5、C
【分析】
由平行线的性质和相似三角形的判定证明△ABC∽△ADE,再利用相似三角形的性质和求解即可.
【详解】
解:∵ED∥BC,
∴∠ABC=∠ADE,∠ACB=∠AED,
∴△ABC∽△ADE,
∴BC:ED= AB:AD,
∵AD:DB=1:4,
∴AB:AD=3:1,又ED=2,
∴BC:2=3:1,
∴BC=6,
故选:C
【点睛】
本题考查平行线的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答的关键.
6、C
【分析】
根据流程图所示顺序,逐框分析代入求值即可.
【详解】
解:当输入时,
代入
代入,则输出
故选C
【点睛】
本题考查了程序流程图与代数式求值,正确代入求值是解题的关键.
7、D
【分析】
当为各边中点,,,四边形· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.
【详解】
解:如图,连接当为各边中点时,可知分别为的中位线
∴
∴四边形是平行四边形
A中AC=BD,则,平行四边形为菱形;正确,不符合题意;
B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;
C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;
D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;
故选D.
【点睛】
本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.
8、D
【分析】
根据AG平分∠BAC,可得∠BAG=∠CAG,再由点 是 的中点,可得 ,然后根据,可得到△DAE∽△CAB,进而得到△EAF∽△BAG,△ADF∽△ACG,即可求解.
【详解】
解:∵AG平分∠BAC,
∴∠BAG=∠CAG,
∵点 是 的中点,
∴ ,
∵,∠DAE=∠BAC,
∴△DAE∽△CAB,
∴ ,
∴∠AED=∠B,
∴△EAF∽△BAG,
∴ ,故C正确,不符合题意;
∵,∠BAG=∠CAG,
∴△ADF∽△ACG,
∴ ,故A正确,不符合题意;D错误,符合题意;
∴,故B正确,不符合题意;
故选:D
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
9、D
【分析】
根据数轴可以把A、B、C、D四个点表示的数写出来,然后根据写出的数即可得到那两个数的绝对值相等,从而可以得到问题的答案.
【详解】
解:由数轴可得,点A、B、C、D在数轴上对应的数依次是:−3,2,-1,3,
则|−3|=|3|,
故点A与点D表示的数的绝对值相等,
故选:D.
【点睛】
本题考查数轴,解题的关键是利用数形结合的思想找出所求问题需要的条件.
10、B
【分析】
根据二次函数图象左加右减,上加下减的平移规律进行求解.
【详解】
解:将抛物线y=x2先向右平移3个单位长度,得:y=(x﹣3)2;
再向上平移5个单位长度,得:y=(x﹣3)2+5,
故选:B.
【点睛】
本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.
二、填空题
1、40
【分析】
根据待定系数法求出k即可得到反比例函数的解析式;利用反比例函数系数k的几何意义求出小正方形的面积,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积,根据图中阴影部分的面积=大正方形的面积-小正方形的面积即可求出结果.
【详解】
解:∵反比例函数y=kx的图象经过点A(32,4),
∴k=32×4=6,
∴反比例函数的解析式为y=6x;
∵小正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,
∴设B点的坐标为(m,m),
∵反比例函数y=6x的图象经过B点,
∴m=6m,
∴m2=6,
∴小正方形的面积为4m2=24,
∵大正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,且A(32,4),
∴大正方形在第一象限的顶点坐标为(4,4),
∴大正方形的面积为4×42=64,
∴图中阴影部分的面积=大正方形的面积-小正方形的面积=64-24=40.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题主要考查了待定系数法求反比例函数的解析式,反比例函数系数k的几何意义,正方形的性质,熟练掌握反比例函数系数k的几何意义是解决问题的关键.
2、111°30'
【分析】
首先根据角平分线定义可得∠BOD=2∠BOC,再根据邻补角的性质可得∠AOD的度数.
【详解】
∵射线OC平分∠DOB.
∴∠BOD=2∠BOC,
∵∠COB=34°15',
∴∠BOD=68°30',
∴∠AOD=180°-68°30'=111°30',
故答案为:111°30'.
【点睛】
此题主要考查了角平分线定义和邻补角的定义,关键是掌握角平分线把角分成相等的两部分.需要注意角度度分秒的计算.
3、12π
【分析】
根据弧长公式直接计算即可.
【详解】
∵圆的半径为36cm.所对的圆心角为60°,
∴弧的长度为:nπr180=60×π×36180=12π,
故答案为:12π.
【点睛】
本题考查了弧长的计算,熟练掌握弧长公式及其使用条件是解题的关键.
4、 (2,2) 22022
【分析】
过C1、C2、…分别作x轴的垂线,垂足分别为D1、D2、D3…,故△OD1C1是等腰直角三角形,从而求出C1的坐标;由点C1是等腰直角三角形的斜边中点,可以得到OA1的长,然后再设未知数,表示点C2的坐标,确定y2,代入反比例函数的关系式,建立方程解出未知数,表示点的坐标,确定y3,……然后再求和.
【详解】
过C1、C2、…分别作x轴的垂线,垂足分别为D1、D2、D3…,
则∠OD1C1=∠OD2C2=∠OD3C3=90°,
∵△OA1B1是等腰直角三角形,
∴∠A1OB1=45°,
∴∠OC1D1=45°,
∴OD1=C1D1,
其斜边的中点C1在反比例函数y=4x,
∴C1(2,2),即y1=2,
∴OD1=D1A1=2,
∴OA1=2OD1=4,
设,则,此时,代入y=4x得:a(4+a)=4,
解得:a=22-2,即:y2=22-2,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
同理:y3=23-22,
y4=24-23,
……,
y2022=22022-22021
∴y1+y2+y3+⋯⋯+y2022
=2+22-2+23-22+⋯⋯+22022-22021
=22022
故答案为:(2,2),22022.
【点睛】
本题考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,掌握相关知识点之间的应用是解题的关键.
5、245
【分析】
根据平行四边形的性质可知,即可证明△EDF∼△BCF,推出DEBC=DFCF,由此即可求出CF的长.
【详解】
∵四边形ABCD是平行四边形,
∴,即,
∴∠E=∠CBF,∠EDF=∠C,
∴△EDF∼△BCF,
∴DEBC=DFCF.
∵CD=AB=8,
∴DF=CD-CF=8-CF.
∵BC=AD=6
∴46=8-CFCF,
∴CF=245.
故答案为:245.
【点睛】
本题考查平行四边形的性质,相似三角形的判定和性质.掌握相似三角形的判定方法是解答本题的关键.
三、解答题
1、
(1)见解析
(2)见解析
(3)见解析
【分析】
(1)根据直线和射线的定义作图即可;
(2)以点C为圆心,BC为半径画弧,与射线BC交于点D即可;
(3)根据两点之间,线段最短,连接AC,与直线l交于点E即可.
(1)
解:如图,线段AB,射线BC即为所求;
(2)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
如图,点D即为所求;
(3)
如图,点E即为所求.
【点睛】
本题考查了作图-复杂作图、直线、射线、线段、线段的性质,解决本题的关键是掌握线段的性质.
2、见解析
【分析】
由垂直可得,根据相似三角形的判定定理直接证明即可.
【详解】
证明:∵,
∴,
在和中,
∵,
∴.
【点睛】
题目主要考查相似三角形的判定定理,熟练掌握相似三角形的判定是解题关键.
3、
(1)110°
(2)100°
【分析】
(1)由OM是∠AOB的角平分线,∠AOB=30°,得到,则∠BON=∠MON-∠BOM=55°,再由ON是∠BOC的角平分线,得到∠BOC=2∠BON=110°;
(2)设∠AOM=∠NOC=x,则∠AOB=4x,可推出∠BOM=3x,∠BOM:∠BON=3:2,得到∠BON=2x,根据∠AOC=∠AOB+∠BON+∠NOC=7x=140°,得到x=20°,则∠MON=∠BOM+∠BON=5x=100°.
(1)
解:∵OM是∠AOB的角平分线,∠AOB=30°,
∴,
∵∠MON=70°,
∴∠BON=∠MON-∠BOM=55°,
∵ON是∠BOC的角平分线,
∴∠BOC=2∠BON=110°;
(2)
解:设∠AOM=∠NOC=x,则∠AOB=4x,
∴∠BOM=∠AOB-∠AOM=3x,
∵∠BOM:∠BON=3:2,
∴∠BON=2x,
∴∠AOC=∠AOB+∠BON+∠NOC=7x=140°,
∴x=20°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠MON=∠BOM+∠BON=5x=100°.
【点睛】
本题主要考查了几何中角度的计算,角平分线的定义,解题的关键在于能够熟练掌握相关知识.
4、(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)
【分析】
(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;
(2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;
(3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解.
【详解】
(1)∵,
∴.
∵,
∴,
∴,
∴,
∴,.
(2)如图,过点F作FH⊥AO于点H
∵AF⊥AE
∴∠FHA=∠AOE=90°,
∵
∴∠AFH=∠EAO
又∵AF=AE,
在和中
∴
∴AH=EO=2,FH=AO=4
∴OH=AO-AH=2
∴F(-2,4)
∵OA=BO,
∴FH=BO
在和中
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴
∴HD=OD
∵
∴HD=OD=1
∴D(-1,0)
∴D(-1,0),F(-2,4);
(3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S
∴
∴,
∴
∴
∴
∴等腰
∴NQ=NO,
∵NG⊥PN, NS⊥EG
∴
∴,
∴
∵,
∴
∵点E为线段OB的中点
∴
∴
∴
∴
∴
∴
∴
∴等腰
∴NG=NP,
∵
∴
∴∠QNG=∠ONP
在和中
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴
∴∠NGQ=∠NPO,GQ=PO
∵,
∴PO=PB
∴∠POE=∠PBE=45°
∴∠NPO=90°
∴∠NGQ=90°
∴∠QGR=45°.
在和中
∴.
∴QR=OE
在和中
∴
∴QM=OM.
∵NQ=NO,
∴NM⊥OQ
∵
∴等腰
∴
∵
∴
在和中
∴
∴NS=EM=4,MS=OE=2
∴N(-6,2).
【点睛】
本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解.
5、(1)2xz;(2)ab+1
【分析】
(1)先计算积的乘方,后自左到右依次计算即可,
(2)先计算括号里的,最后计算除法.
【详解】
解:(1)原式
=2xz;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)原式=
=
=ab+1.
【点睛】
本题考查了整式的混合运算,熟练掌握运算的顺序,运算公式和运算法则是解题的关键.
【历年真题】2022年四川省成都市中考数学三年高频真题汇总 卷(Ⅲ)(含答案及详解): 这是一份【历年真题】2022年四川省成都市中考数学三年高频真题汇总 卷(Ⅲ)(含答案及详解),共26页。试卷主要包含了下列说法中,正确的是,下列命题,是真命题的是等内容,欢迎下载使用。
【历年真题】2022年四川省成都市中考数学历年真题汇总 卷(Ⅲ)(含答案详解): 这是一份【历年真题】2022年四川省成都市中考数学历年真题汇总 卷(Ⅲ)(含答案详解),共23页。试卷主要包含了已知的两个根为等内容,欢迎下载使用。
【真题汇总卷】2022年四川省成都市中考数学第一次模拟试题(含答案详解): 这是一份【真题汇总卷】2022年四川省成都市中考数学第一次模拟试题(含答案详解),共25页。试卷主要包含了下列各数中,是无理数的是,方程的解是.,如图所示,,,,,则等于,和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。