【真题汇编】2022年四川省成都市青羊区中考数学模拟真题 (B)卷(含答案详解)
展开这是一份【真题汇编】2022年四川省成都市青羊区中考数学模拟真题 (B)卷(含答案详解),共20页。试卷主要包含了的值.,和按如图所示的位置摆放,顶点B,下列命题,是真命题的是等内容,欢迎下载使用。
2022年四川省成都市青羊区中考数学模拟真题 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点是线段的中点,点是的中点,若,,则线段的长度是( )
A.3cm B.4cm C.5cm D.6cm
2、如图,在中,.分别以点A,B为圆心,大于的长为半径画弧.两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若,则的度数是( )
A.22° B.24° C.26° D.28°
3、将正方体的表面分别标上数字1,2,3,并在它们的对面分别标上一些负数,使它的任意两个相对面的数字之和为0,将这个正方体沿某些棱剪开,得到以下的图形,这些图形中,其中的x对应的数字是﹣3的是( )
A. B.
C. D.
4、的值( ).
A. B.2022 C. D.-2022
5、若方程有实数根,则实数a的取值范围是( )
A. B.
C.且 D.且
6、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).
A.7 B.6 C.5 D.4
7、下列图形中,既是轴对称图形又是中心对称图形是( )
A. B. C. D.
8、下列图形绕直线旋转一周,可以得到圆柱的是( )
A. B. C. D.
9、下列命题,是真命题的是( )
A.两条直线被第三条直线所截,内错角相等
B.邻补角的角平分线互相垂直
C.相等的角是对顶角
D.若,,则
10、若反比例函数的图象经过点,则该函数图象不经过的点是( )
A.(1,4) B.(2,-2) C.(4,-1) D.(1,-4)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,,,,为的角平分线.M为边上一动点,N为线段上一动点,连接、、,当取得最小值时,的面积为______.
2、如图,在边长1正网格中,A、B、C都在格点上,AB与CD相交于点D,则sin ∠ADC=_____.
3、已知1,2,3,4,5的方差为2,则2021,2022,2023,2024,2025的方差为______.
4、数轴上点A、B所对应的实数分别是、﹣1,那么A、B两点的距离AB=___.
5、如图,是的中线,,,把沿翻折,使点落在的位置,则为___.
三、解答题(5小题,每小题10分,共计50分)
1、解方程(2x+1)2=x(2x+1).
2、如图,点 A、B、C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M、N、P、Q.在点D的运动过程中,有下列结论:
①存在无数个中点四边形MNPQ是平行四边形;
②存在无数个中点四边形MNPQ是菱形
③存在无数个中点四边形MNPQ是矩形
④存在无数个中点四边形MNPQ是正方形
所有正确结论的序号是___.
3、(阅读材料)
我们知道,任意一个正整数n都可以进行这样的分解:(p,q是正整数,且).在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称是n的最佳分解,并规定当是n的最佳分解时,.例如:18可以分解成,或,因为,所以是18的最佳分解,从而.
(1) , ,…;
(2),, ,…;
猜想: (x是正整数).
(应用规律)
(3)若,且x是正整数,求x的值;
(4)若,请直接写出x的值.
4、如图,在四边形ABCD中,对角线BD平分∠ABC,∠A=120°,∠C=60°,AB=17,AD=12.
(1)求证:AD=DC;
(2)求四边形ABCD的周长.
5、如图,AC,BD相交于的点O,且∠ABO=∠C.求证:△AOB∽△DOC.
-参考答案-
一、单选题
1、B
【分析】
根据中点的定义求出AE和AD,相减即可得到DE.
【详解】
解:∵D是线段AB的中点,AB=6cm,
∴AD=BD=3cm,
∵E是线段AC的中点,AC=14cm,
∴AE=CE=7cm,
∴DE=AE-AD=7-3=4cm,
故选B.
【点睛】
本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.
2、B
【分析】
由尺规作图痕迹可知MN垂直平分AB,得到DA=DB,进而得到∠DAB=∠B=50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC,然后计算∠BAC-∠DAB即可.
【详解】
解:∵,
∴∠B=∠C=52°,∠BAC=180°-∠B-∠C=180°-52°-52°=76°,
由尺规作图痕迹可知:MN垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=52°,
∴∠CAD=∠BAC-∠DAB=76°-52°=24°.
故选:B.
【点睛】
本题考查了线段垂直平分线的尺规作图及等腰三角形的性质等,熟练掌握线段垂直平分线的性质及等腰三角形的性质是解决本类题的关键.
3、A
【分析】
根据正方体的表面展开图,相对的面之间一定相隔一个正方形,求出各选项的x的值即可.
【详解】
解: A.x=-3
B.x=-2
C.x=-2
D.x=-2
故答案为:A
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
4、B
【分析】
数轴上表示数的点与原点的距离是数的绝对值,根据绝对值的含义可得答案.
【详解】
解:
故选B
【点睛】
本题考查的是绝对值的含义,掌握“求解一个数的绝对值”是解本题的关键.
5、B
【分析】
若方程为一元二次方程,则有,,求解;若,方程为一元一次方程,判断有实数根,进而求解取值范围即可.
【详解】
解:若方程为一元二次方程,则有,
解得且
若,方程为一元一次方程,有实数根
故选B.
【点睛】
本题考查了一元二次方程根的判别,一元一次方程的根.解题的关键在于全面考虑的情况.
6、A
【分析】
由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.
【详解】
由折叠的性质得,,
∴,,
∴,
∵,
∴,
∴,
在与中,
,
∴,
∴,,
设,则,
∴,
解得:,
∴,,
∴.
故选:A.
【点睛】
本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.
7、B
【分析】
根据轴对称图形和中心对称图形的定义求解即可.
【详解】
解:A、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意;
B、既是轴对称图形又是中心对称图形,故选项正确,符合题意;
C、不是轴对称图形,是中心对称图形,故选项错误,不符合题意;
D、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意.
故选:B.
【点睛】
此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
8、A
【分析】
根据面动成体,直角三角形绕直角边旋转是圆锥,矩形绕边旋转是圆柱,直角梯形绕直角边旋转是圆台,半圆案绕直径旋转是球,可得答案.
【详解】
解:A.旋转后可得圆柱,故符合题意;
B. 旋转后可得球,故不符合题意;
C. 旋转后可得圆锥,故不符合题意;
D. 旋转后可得圆台,故不符合题意;
故选:A.
【点睛】
本题考查了面动成体的知识,熟记各种图形旋转得出的立体图形是解题关键.
9、B
【分析】
利用平行线的性质、邻补角的定义及性质、对顶角的定义等知识分别判断后即可确定正确的选项.
【详解】
解:A、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;
、邻补角的角平分线互相垂直,正确,是真命题,符合题意;
、相等的角不一定是对顶角,故错误,是假命题,不符合题意;
、平面内,若,,则,故原命题错误,是假命题,不符合题意,
故选:.
【点睛】
考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及性质、对顶角的定义等知识,难度不大.
10、A
【分析】
由题意可求反比例函数解析式,将点的坐标一一打入求出xy的值,即可求函数的图象不经过的点.
【详解】
解:因为反比例函数的图象经过点,
所以,
选项A,该函数图象不经过的点(1,4),故选项A符合题意;
选项B,该函数图象经过的点(2,-2),故选项B不符合题意;
选项C,该函数图象经过的点(4,-1),故选项C不符合题意;
选项B,该函数图象经过的点(1,-4),故选项D不符合题意;
故选A.
【点睛】
考查了反比例函数图象上点的坐标特征,熟练运用反比例函数图象上点的坐标满足其解析式是本题的关键.
二、填空题
1、
【分析】
利用点M关于AC的对称点确定N点,当、、三点共线且时,的长取得最小值,再利用三角形的面积公式求出,在利用勾股定理求后即可求出的面积.
【详解】
∵为的角平分线,将沿翻折,
∴的对应点一定在边上.
∴
∴当、、三点共线且时,
的长取得最小值
∵在中,,,
∴
∵
∴
∴在中,
∴.
【点睛】
本题考查了最短路径问题以及勾股定理,灵活运用勾股定理是解题的关键.
2、##
【分析】
将转化成其他相等的角,在直角三角形中,利用正弦函数值的定义求解即可.
【详解】
解:延长CD交正方形的另一个顶点为,连接BE,如下图所示:
由题意可知:,,
根据正方形小格的边长及勾股定理可得:,,
在中,,
,
故答案为:.
【点睛】
本题主要是考查了勾股定理和求解正弦值,熟练地找到所求角在的直角三角形,利用正弦函数值的定义进行求解,这是解决该题的关键.
3、2
【分析】
将第二组数据中的每一个数据均减去2020后得到一组新数据与甲数据相等,由此可以得到两组数据的方差相同.
【详解】
解:将数据:2021、2022、2023、2024、2025都减去2020后得到数据1、2、3、4、5,
与数据:1、2、3、4、5的方差相同,是2
故答案为:2.
【点睛】
本题考查了方差,牢记方差的变化规律是解决此类问题的关键.
4、
【分析】
根据数轴上两点间的距离等于表示这两个数的差的绝对值,即可求得A、B两点的距离.
【详解】
由题意得:
故答案为:
【点睛】
本题考查了数轴上两点间的距离,掌握数轴上两点间的距离等于表示这两个实数的差的绝对值是解答本题的关键.
5、
【分析】
根据翻折知:∠ADE=∠ADC=45°,ED=EC,得到∠BDE=90°,利用勾股定理计算即可.
【详解】
解:是的中线,
,
翻折,
,,
,,
在中,由勾股定理得:,
故答案为:.
【点睛】
本题考查的是翻折变换以及勾股定理,熟记翻折前后图形的对应角相等、对应边相等是解题的关键.
三、解答题
1、
【分析】
先移项,再提取公因式 利用因式分解法解方程即可.
【详解】
解:(2x+1)2=x(2x+1)
即
或
解得:
【点睛】
本题考查的是利用因式分解法解一元二次方程,掌握“提取公因式分解因式,再化为两个一次方程”是解本题的关键.
2、①②③
【分析】
根据中点四边形的性质:一般中点四边形是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂线的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形,由此即可判断.
【详解】
解:∵一般中点四边形是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂线的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形,
∴存在无数个中点四边形MNPQ是平行四边形,存在无数个中点四边形MNPQ是菱形,存在无数个中点四边形MNPQ是矩形.
故答案为:①②③
【点睛】
本题考查中点四边形,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
3、
(1),;
(2)1,1;
(3)8;
(4)6.
【分析】
(1)由信息可知15的最佳分解是3×5,24的最佳分解是4×6,代入即可;
(2)由平方数的特点可知结果为1;
(3)把x2+x化为x(x+1)即可得出结果;
(4)把(x2-11)写成完全平方数形式即可得出x.
(1)
解:∵3×5=15
∴
∵4×6=24
∴
(2)
解:∵4,9,25都是平方数,∴,;
(3)
解:∵x2+x=x(x+1)
∴x(x+1)=89
∴x=8
(4)
解:∵由(2)的解题过程可知(x2-11)是一个完全平方数.
∴x2-11=x2-12+1
∴2x=12
∴x=6
【点睛】
本题考查了对新定义的理解和应用,解题的关键是从题目所给的信息中分析得出规律从而掌握分解因数的方法.还要熟悉完全平方数的概念.
4、
(1)证明见解析;
(2)70.
【分析】
(1)在BC上取一点E,使BE=AB,连接DE,证得△ABD≌△EBD,进一步得出∠BED=∠A,利用等腰三角形的判定与性质与等量代换解决问题;
(2)首先判定△DEC为等边三角形,求得BC,进一步结合(1)的结论解决问题.
(1)
证明:在BC上取一点E,使BE=AB,连结DE.
∵BD平分∠ABC,
∴∠ABD=∠CBD.
在△ABD和△EBD中,
,
∴△ABD≌△EBD(SAS);
∴DE=AD=12,∠BED=∠A,AB=BE=17.
∵∠A=120°,
∴∠DEC=60°.
∵∠C=60°,
∴∠DEC=∠C,
∴DE=DC,
∴AD=DC.
(2)
∵∠C=60°,DE=DC,
∴△DEC为等边三角形,
∴EC=CD=AD.
∵AD=12,
∴EC=CD=12,
∴四边形ABCD的周长=17+17+12+12+12=70.
【点睛】
此题考查全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质,结合图形,灵活解答.
5、见解析
【分析】
利用对顶角相等得到∠AOB=∠COD,再结合已知条件及相似三角形的判定定理即可求解.
【详解】
证明:∵AC,BD相交于的点O,
∴∠AOB=∠DOC,
又∵∠ABO=∠C,
∴△AOB∽△DOC.
【点睛】
本题考查了相似三角形的判定定理:若一对三角形的两组对应角相等,则这两个三角形相似,由此即可求解.
相关试卷
这是一份【真题汇总卷】2022年四川省成都市中考数学模拟真题测评 A卷(含答案详解),共22页。试卷主要包含了下列二次根式中,不能与合并的是,若抛物线的顶点坐标为等内容,欢迎下载使用。
这是一份【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了有依次排列的3个数,下列计算正确的是等内容,欢迎下载使用。
这是一份【真题汇编】最新中考数学模拟真题练习 卷(Ⅱ)(含答案及详解),共20页。试卷主要包含了在平面直角坐标系xOy中,点A,下列四个实数中,无理数是,下列式中,与是同类二次根式的是等内容,欢迎下载使用。