【难点解析】2022年重庆市中考数学三年真题模拟 卷(Ⅱ)(精选)
展开2022年重庆市中考数学三年真题模拟 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知,,且,则的值为( )
A.1或3 B.1或﹣3 C.﹣1或﹣3 D.﹣1或3
2、若单项式与是同类项,则的值是( )
A.6 B.8 C.9 D.12
3、在数-12,π,-3.4,0,+3,中,属于非负整数的个数是( )
A.4 B.3 C.2 D.1
4、如图,中,,,,,平分,如果点,分别为,上的动点,那么的最小值是( )
A.6 B.8 C.10 D.4.8
5、已知关于x,y的方程组和的解相同,则的值为( )
A.1 B.﹣1 C.0 D.2021
6、的相反数是( )
A. B. C. D.3
7、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )
A.1 B.2 C.3 D.4
8、质检部门从同一批次1000件产品中随机抽取100件进行检测,检测出次品3件,由此估计这一批次产品中次品件数是( )
A.60 B.30 C.600 D.300
9、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )
A. B. C. D.
10、已知关于的分式方程无解,则的值为( )
A.0 B.0或-8 C.-8 D.0或-8或-4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=56°,∠2=29°,则∠A的度数为______度.
2、一名男生推铅球,铅球行进的高度y(单位:米)与水平距离x(单位:米)之间的关系为,则这名男生这次推铅球的成绩是______米.
3、如图,B、C、D在同一直线上,,,,则的面积为_______.
4、已知点P(3m﹣6,m+1),A(﹣1,2),直线PA与x轴平行,则点P的坐标为_____.
5、如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是_____.
三、解答题(5小题,每小题10分,共计50分)
1、计算:.
2、由13个完全相同的小正方体搭成的物体如图所示.
(1)请在下面的方格图中分别画出该物体的左视图和俯视图;
(2)在保持物体左视图和俯视图不变的情况下,图中的小正方体最多可以拿走 个.
3、如图,在⊙O中,弦AC与弦BD交于点P,AC=BD.
(1)求证AP=BP;
(2)连接AB,若AB=8,BP=5,DP=3,求⊙O的半径.
4、定义:若实数x,y,,,满足,(k为常数,),则在平面直角坐标系中,称点为点的“k值关联点”.例如,点是点的“4值关联点”.
(1)判断在,两点中,哪个点是的“k值关联点”;
(2)设两个不相等的非零实数m,n满足点是点的“k值关联点”,则_______________
5、如图,已知点、分别在中的边、的延长线上,且.
(1)如果,,,求的长;
(2)如果,,,过点作,垂足为点,求的长.
-参考答案-
一、单选题
1、A
【分析】
由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.
【详解】
解:∵,,
,
∴x=1,y=-2,此时x-y=3;
x=-1,y=-2,此时x-y=1.
故选:A.
【点睛】
此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.
2、C
【分析】
根据同类项的定义可得,代入即可求出mn的值.
【详解】
解:∵与是同类项,
∴,
解得:m=3,
∴.
故选:C.
【点睛】
此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项.
3、C
【分析】
非负整数即指0或正整数,据此进行分析即可.
【详解】
解:在数-12,π,-3.4,0,+3,中,属于非负整数的数是:0,+3,共2个,
故选:C.
【点睛】
本题主要考查了有理数.明确非负整数指的是正整数和0是解答本题的关键.
4、D
【分析】
如图所示:过点作于点,交于点,过点作于点,则,此时最小,再利用等面积法求解最小值即可.
【详解】
解:如图所示:
过点作于点,交于点,
过点作于点,
平分,
,
.
在中,,,,,,
,
,
.
即的最小值是4.8,
故选:D.
【点睛】
本题考查的是垂线段最短,角平分线的性质定理的应用,等面积法的应用,确定取最小值时点的位置是解本题的关键.
5、B
【分析】
联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求.
【详解】
解:联立得:,
解得:,
则有,
解得:,
∴,
故选:B.
【点睛】
此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值.
6、D
【分析】
根据只有符号不同的两个数是互为相反数解答即可.
【详解】
解:的相反数是3,
故选D.
【点睛】
本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
7、A
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
8、B
【分析】
根据样本的百分比为,用1000乘以3%即可求得答案.
【详解】
解:∵随机抽取100件进行检测,检测出次品3件,
∴估计1000件产品中次品件数是
故选B
【点睛】
本题考查了根据样本求总体,掌握利用样本估计总体是解题的关键.
9、B
【分析】
直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.
【详解】
解:点P(2,1)关于x轴对称的点的坐标是(2,-1).
故选:B.
【点睛】
本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.
10、D
【分析】
把分式方程转化为整式方程,分分母为零无解,分母为零时,对应的字母值求解.
【详解】
∵
∴,
∴,
∴,
∴当m+4=0时,方程无解,
故m= -4;
∴当m+4≠0,x=2时,方程无解,
∴
故m=0;
∴当m+4≠0,x= -2时,方程无解,
∴
故m=-8;
∴m的值为0或-8或-4,
故选D.
【点睛】
本题考查了分式方程的无解,正确理解无解的条件和意义是解题的关键.
二、填空题
1、27
【分析】
如图,∠3=∠1,由∠3=∠2+∠A计算求解即可.
【详解】
解:如图
∵a∥b,∠1=56°
∴∠3=∠1=56°
∵∠3=∠2+∠A,∠2=29°
∴∠A=∠3﹣∠2=56°﹣29°=27°
故答案为:27.
【点睛】
本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.
2、10
【分析】
将代入解析式求的值即可.
【详解】
解:∵
∴
解得:(舍去),
故答案为:10.
【点睛】
本题考查了二次函数的应用.解题的关键在于正确的解一元二次方程.所求值要满足实际.
3、20
【分析】
根据题意由“SAS”可证△ABC≌△CDE,得AC=CE,∠ACB=∠CED,再证∠ACE=90°,然后由勾股定理可求AC的长,进而利用三角形面积公式即可求解.
【详解】
解:在△ABC和△CDE中,
,
∴△ABC≌△CDE(SAS),
∴AC=CE,∠ACB=∠CED,
∵∠CED+∠ECD=90°,
∴∠ACB+∠ECD=90°,
∴∠ACE=90°,
∵∠B=90°,AB=2,BC=6,
∴,
∴CE=,
∴S△ACE=AC×CE=××=20,
故答案为:20.
【点睛】
本题考查全等三角形的判定和性质,勾股定理,等腰直角三角形的性质等知识,证明△ABC≌△CDE是解题的关键.
4、(﹣3,2)
【分析】
由题意知m+1=2,得m的值;将m代入求点P的坐标即可.
【详解】
解:∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上
∴m+1=2
解得m=1
∴3m﹣6=3×1﹣6=﹣3
∴点P的坐标为(﹣3,2)
故答案为:(﹣3,2).
【点睛】
本题考查了直角坐标系中与x轴平行的直线上点坐标的关系.解题的关键在于明确与x轴平行的直线上点坐标的纵坐标相等.
5、##
【分析】
如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.解直角三角形求出BH,CH即可解决问题.
【详解】
解:如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.
∵∠ABC=120°,
∴∠ABH=180°﹣∠ABC=60°,
∵AB=12,∠H=90°,
∴BH=AB•cos60°=6,AH=AB•sin60°=6,
∵EF⊥DF,DE=5,
∴sin∠ADE== ,
∴EF=4,
∴DF===3,
∵S△CDE=6,
∴ ·CD·EF=6,
∴CD=3,
∴CF=CD+DF=6,
∵tanC==,
∴ =,
∴CH=9,
∴BC=CH﹣BH=9﹣6.
故答案为:
【点睛】
本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.
三、解答题
1、
【分析】
由实数的运算法则计算即可.
【详解】
解:原式
.
【点睛】
本题考查了实数的混合运算,实数包括有理数和无理数,所以实数的混合运算包含了绝对值,幂的运算,开平方开立方等全部计算形式,仍满足先乘除后加减,有括号先算括号内的运算顺序.
2、
(1)见解析
(2)4
【分析】
(1)直接利用三视图的观察角度不同分别得出左视图和俯视图;
(2)利用左视图和俯视图不变得出答案即可.
(1)
解:左视图和俯视图如图所示:
,
(2)
解:在左视图和俯视图不变的情况下,可以从顶层移走右边1个正方体,可以从中间层移走靠右边两行的3个正方体,
故答案为:4.
【点睛】
本题主要考查了由实物画三视图,正确掌握观察角度是解题关键.
3、(1)证明见解析;(2).
【分析】
(1)连接,先证出,再根据圆周角定理可得,然后根据等腰三角形的判定即可得证;
(2)连接,并延长交于点,连接,过作于点,先根据线段垂直平分线的判定与性质可得,再根据线段的和差、勾股定理可得,然后根据直角三角形全等的判定定理证出,根据全等三角形的性质可得,最后在中,利用勾股定理可得的长,从而可得的长,在中,利用勾股定理即可得.
【详解】
证明:(1)如图,连接,
,
,
,即,
,
;
(2)连接,并延长交于点,连接,过作于点,
,
,
是的垂直平分线,
,
,
,
,
在和中,,
,
,
设,则,
在中,,即,解得,
在中,,
即的半径为.
【点睛】
本题考查了圆周角定理、直角三角形全等的判定定理与性质、勾股定理、垂径定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键.
4、
(1)
(2)−3
【分析】
(1)根据“k值关联点”的含义,只要找到k的值,且满足,即可作出判断,这只要根据,若两式求得的k的值相等则是,否则不是;
(2)根据“k值关联点”的含义得到两个等式,消去k即可求得mn的值.
(1)
对于点A:
∵
∴点不是的“k值关联点”;
对于点B:
∵
∴点是的“值关联点”;
(2)
∵点是点的“k值关联点”
∴
得:
即
∵
∴
故答案为:−3
【点睛】
本题是材料题,考查了点的坐标,消元思想,关键是读懂题目,理解题中的“k值关联点”的含义.
5、
(1)8;
(2).
【分析】
(1)根据,得出∠E=∠C,∠EDA=∠B,可证△DEA∽△BCA,得出,可求,根据,得出,求BC即可;
(2)根据,得出△DEA∽△BCA,得出,根据,得出,,在中,,代入数据得出,即可求出DF
(1)
解:∵,
∴∠E=∠C,∠EDA=∠B,
∴△DEA∽△BCA,
∴,
∵,,
∴,
∵,
∴.
∴.
(2)
解:∵,
∴△DEA∽△BCA,
∴,
∵,
∴,
∵,
∴,
∴,
∵,垂足为点,
∴.
在中,,
即,
∴.
【点睛】
本题考查平行线性质,三角形相似判定与性质,锐角三角函数,掌握平行线性质,三角形相似判定与性质,锐角三角函数是解题关键.
【难点解析】2022年浙江省台州市中考数学真题模拟测评 (A)卷(精选): 这是一份【难点解析】2022年浙江省台州市中考数学真题模拟测评 (A)卷(精选),共19页。试卷主要包含了在中,,,则,下列各对数中,相等的一对数是,的相反数是等内容,欢迎下载使用。
【难点解析】2022年中考数学三年真题模拟 卷(Ⅱ)(精选): 这是一份【难点解析】2022年中考数学三年真题模拟 卷(Ⅱ)(精选),共25页。试卷主要包含了二次函数 y=ax2+bx+c等内容,欢迎下载使用。
【难点解析】2022年中考数学模拟真题练习 卷(Ⅱ)(精选): 这是一份【难点解析】2022年中考数学模拟真题练习 卷(Ⅱ)(精选),共19页。试卷主要包含了二次函数 y=ax2+bx+c等内容,欢迎下载使用。