【难点解析】2022年中考数学三年真题模拟 卷(Ⅱ)(精选)
展开2022年中考数学三年真题模拟 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、今年,网络购物已经成为人们生活中越来越常用的购物方式.元旦期间,某快递分派站有包裹若干件需快递员派送,若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x名快递,则可列方程为( )
A. B. C. D.
2、如图,矩形ABCD中,点E,点F分别是BC,CD的中点,AE交对角线BD于点G,BF交AE于点H.则的值是( )
A. B. C. D.
3、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第1次操作;做第2次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续操作下去,从数串2,9,7开始操作第2022以后所产生的那个新数串的所有数之和是( )
A.20228 B.10128 C.5018 D.2509
4、如图,为直线上的一点,平分,,,则的度数为( )
A.20° B.18° C.60° D.80°
5、二次函数 y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若关于 x 的方程ax2+bx+c=1 有两个根,则这两个根的和为﹣4;④若关于 x 的方程 a(x+5)(x﹣1)=﹣1 有两个根 x1和 x2,且 x1<x2,则﹣5<x1<x2<1.其中正确的结论有( )
A.1 个 B.2 个 C.3 个 D.4 个
6、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B.那么它爬行的最短路程为( )
A.10米 B.12米 C.15米 D.20米
7、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,( )
A.1 B. C. D.
8、在实数范围内分解因式2x2﹣8x+5正确的是( )
A.(x﹣)(x﹣) B.2(x﹣)(x﹣)
C.(2x﹣)(2x﹣) D.(2x﹣4﹣)(2x﹣4+)
9、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A. B. C. D.
10、下列说法正确的是( )
A.不相交的两条直线叫做平行线
B.过一点有且仅有一条直线与已知直线垂直
C.平角是一条直线
D.过同一平面内三点中任意两点,只能画出3条直线
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,,,,蚂蚁甲从点A出发,以1.5cm/s的速度沿着三角形的边按的方向行走,甲出发1s后蚂蚁乙从点A出发,以2cm/s的速度沿着三角形的边按的方向行走,那么甲出发________s后,甲乙第一次相距2cm.
2、计算:=___;
3、如果有理数满足,在数轴上点所表示的数是,点所表示的数是;那么在数轴上_______(填点和点中哪个点在哪个点)的右边.
4、已知点 P (m + 2, 3)和点 Q (2, n - 4)关于原点对称,则 m + n =_____.
5、小华为学校“赓续百年初心,庆祝建党百年”活动布置会场,在—个不透明的口袋里有4根除颜色以外完全相同的缎带,其中2根为红色,2根为黄色,从口袋中随机摸出根缎带,则恰好摸出1根红色缎带1根黄色缎带的概率是______.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:.
2、计算:
(1)
(2)
3、点C在直线AB上,点D为AC的中点,如果CB=CD,AB=10.5cm.求线段BC的长度.
4、二次函数的图象与y轴交于点A,将点A向右平移4个单位长度,得到点B,点B在二次函数的图象上.
(1)求点B的坐标(用含的代数式表示);
(2)二次函数的对称轴是直线 ;
(3)已知点(,),(,),(,)在二次函数的图象上.若,比较,,的大小,并说明理由.
5、如图,四边形ABCD内接⊙O,∠C=∠B.
(1)如图1,求证:AB=CD;
(2)如图2,连接BO并延长分别交⊙O和CD于点F、E,若CD=EB,CD⊥EB,求tan∠CBF;
(3)如图3,在(2)的条件下,在BF上取点G,连接CG并延长交⊙O于点I,交AB于H,EF∶BG=1∶3,EG=2,求GH的长.
-参考答案-
一、单选题
1、B
【分析】
设该分派站有x个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x的一元一次方程,求出答案.
【详解】
解:设该分派站有x名快递员,则可列方程为:
7x+6=8x-1.
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键.
2、B
【分析】
取的中点,连接,交于点,则,,由,得,由,得,,则,,从而解决问题.
【详解】
解:矩形中,点,点分别是,的中点,
,,,
取的中点,连接,交于点,如图,
则是的中位线,
,,
,,
,
,
,
,
,
,,
,,
,,
,
,
故选:B.
【点睛】
本题主要考查了矩形的性质,相似三角形的判定与性质,利用相似三角形的性质表示出和的长是解题的关键.
3、B
【分析】
根据题意分别求得第一次操作,第二次操作所增加的数,可发现是定值5,从而求得第101次操作后所有数之和为2+7+9+2022×5=10128.
【详解】
解:∵第一次操作增加数字:-2,7,
第二次操作增加数字:5,2,-11,9,
∴第一次操作增加7-2=5,
第二次操作增加5+2-11+9=5,
即,每次操作加5,第2022次操作后所有数之和为2+7+9+2022×5=10128.
故选:B.
【点睛】
此题主要考查了数字变化类,关键是找出规律,要求要有一定的解题技巧,解题的关键是能找到所增加的数是定值5.
4、A
【分析】
根据角平分线的定义得到,从而得到,再根据可得,即可求出结果.
【详解】
解:∵OC平分,
∴,
∴,
∵,
∴,
∴,
故选:A.
【点睛】
本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键.
5、C
【分析】
求解的数量关系;将代入①式中求解判断正误;②将代入,合并同类项判断正负即可;③中方程的根关于对称轴对称,求解判断正误;④中求出二次函数与轴的交点坐标,然后观察方程的解的取值即可判断正误.
【详解】
解:由顶点坐标知
解得
∵
∴当时,,故①正确,符合题意;
,故②错误,不符合题意;
方程的根为的图象与直线的交点的横坐标,即关于直线对称,故有,即,故③正确,符合题意;
,与轴的交点坐标为,方程的根为二次函数图象与直线的交点的横坐标,故可知,故④正确,符合题意;
故选C.
【点睛】
本题考查了二次函数的图象与性质,二次函数与二次方程等知识.解题的关键与难点在于从图象中提取信息,并且熟练掌握二次函数与二次方程的关系.
6、C
【分析】
将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可.
【详解】
解:如图,
(1)AB==;
(2)AB==15,
由于15<,
则蚂蚁爬行的最短路程为15米.
故选:C.
【点睛】
本题考查了平面展开--最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算.
7、C
【分析】
证明,则,计算的长,得,证明是等腰直角三角形,可得的长.
【详解】
解:四边形是正方形,
,,,
,
,
,
,
,
,
,
,
,
是等腰直角三角形,
,
故选:C.
【点睛】
本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.
8、B
【分析】
解出方程2x2-8x+5=0的根,从而可以得到答案.
【详解】
解:∵方程2x2-8x+5=0中,a=2,b=-8,c=5,
∴Δ=(-8)2-4×2×5=64-40=24>0,
∴x=,
∴2x2-8x+5=2(x﹣)(x﹣),
故选:B.
【点睛】
本题考查了解一元二次方程,实数范围内分解因式,求出一元二次方程的根是解题的关键.
9、C
【分析】
由数轴可得: 再逐一判断的符号即可.
【详解】
解:由数轴可得:
故A,B,D不符合题意,C符合题意;
故选C
【点睛】
本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.
10、B
【分析】
根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断.
【详解】
解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;
过一点有且仅有一条直线与已知直线垂直,故选项B正确;
平角是角的两边在同一直线上的角,故选项C错误;
过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;
故选:B.
【点睛】
此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键.
二、填空题
1、4
【分析】
根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.
【详解】
解:根据题意,
∵,,,
∴周长为:(cm),
∵甲乙第一次相距2cm,则甲乙没有相遇,
设甲行走的时间为t,则乙行走的时间为,
∴,
解得:;
∴甲出发4秒后,甲乙第一次相距2cm.
故答案为:4.
【点睛】
本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程.
2、
【分析】
根据二次根式的乘法法则:(a≥0,b≥0)计算.
【详解】
解:原式==,
故答案为:.
【点睛】
本题考查了二次根式的乘除法,掌握二次根式的乘法法则,最后的化简是解题关键.
3、点在点
【分析】
利用a61<0可知a<0,于是可得a622>0,a2021<0,根据原点左边的数为负数,原点右边的数为正数可得结论.
【详解】
解:,
.
,,
点在点的右边.
故答案为:点在点.
【点睛】
本题主要考查了有理数的乘方,数轴.利用负数的偶次方是正数,负数的奇数次方是负数的法则是解题的关键.
4、-3
【分析】
求解的值,然后代入求解即可.
【详解】
解:由题意知
解得
∴
故答案为:.
【点睛】
本题考查了关于原点对称的点坐标的特征.解题的关键在于明确关于原点对称的点坐标的横、纵坐标均互为相反数.
5、
【分析】
画树状图共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,再由概率公式即可求解
【详解】
解:根据题意画出树状图,得:
共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,
所以摸出1根红色缎带1根黄色缎带的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率是解题的关键.
三、解答题
1、
【详解】
解:,
用②①,得:,
解得:,
将代入①,得:,
解得:,
方程组的解为.
【点睛】
此题考查了解二元一次方程组,正确掌握解方程组的方法:代入法和加减法并应用解决问题是解题的关键.
2、
(1)6
(2)3x-25
【分析】
(1)根据负指数,零次幂,绝对值的性质,可得答案;
(2)利用平方差公式计算即可.
(1)
原式=2+1+3=6;
(2)
原式=.
【点睛】
本题考查了实数的运算及整式的混合运算,掌握负指数,零次幂,绝对值的性质,平方差公式是解题关键.
3、4.5cm
【分析】
根据题意画出图形,由线段中点定义得到AC=2CD,进而得到,求出CD,AC,即可求出段BC的长度.
【详解】
解:如图,∵点D为AC的中点,
∴AC=2CD,
∵AB=10.5cm,CB=CD,AC+BC=AB,
∴,
解得CD=3cm,
∴AC=6cm,
∴BC=AB-AC=4.5cm.
.
【点睛】
此题考查了线段的和差计算,正确掌握线段中点定义,依据题意作出图形辅助解决问题是解题的关键.
4、(1)B(4,);(2);(3),见解析
【分析】
(1)根据题意,令,即可求得的坐标,根据平移的性质即可求得点的坐标;
(2)根据题意关于对称轴对称,进而根据的坐标即可求得对称轴;
(3)根据(2)可知对称轴为,进而计算点与对称轴的距离,根据抛物线开口朝下,则点离对称轴越远则函数值越小,据此求解即可
【详解】
解:(1)∵令,
∴,
∴点A的坐标为(0,),
∵将点A向右平移4个单位长度,得到点B,
∴点B的坐标为(4,).
(2) A的坐标为(0,),点B的坐标为(4,)
点都在在二次函数的图象上.即关于对称轴对称
对称轴为
(3)∵对称轴是直线,,
∴点(,),(,)在对称轴的左侧,
点(,)在对称轴的右侧,
∵,
∴,
∴,
,
∵,
∴.
【点睛】
本题考查了平移的性质,二次函数的对称性,二次函数的性质,熟练掌握二次函数的性质是解题的关键.
5、(1)见解析;(2);(3)
【分析】
(1)过点D作DE∥AB交BC于E,由圆内接四边形对角互补可以推出∠B+∠A=180°,证得AD∥BC,则四边形ABED是平行四边形,即可得到AB=DE,∠DEC=∠B=∠C,这DE=CD=AB;
(2)连接OC,FC,设BE=CD=2x,OB=OC=OF=r,则OE=BE-BO=2x-r,EF=BF-BE=2r-2x,由垂径定理可得,∠CEB=∠CEF=∠FCB=90°,则∠FBC+∠F=∠FCE+∠F=90°,可得∠FBC=∠FCE;由勾股定理得,则,
解得,则;
(3)EF:BG=1:3,即则 解得,则,,,如图所示,以B为圆心,以BC所在的直线为x轴建立平面直角坐标系,分别过点A作AM⊥BC与M,过点G作GN⊥BC与N,连接FC,分别求出G点坐标为,C点坐标为;A点坐标为
然后求出直线CG的解析式为,直线AB的解析式为,即可得到H的坐标为(,),则.
【详解】
解:(1)如图所示,过点D作DE∥AB交BC于E,
∵四边形ABCD是圆O的圆内接四边形,
∴∠A+∠C=180°,
∵∠B=∠C,
∴∠B+∠A=180°,
∴AD∥BC,
∴四边形ABED是平行四边形,
∴AB=DE,∠DEC=∠B=∠C,
∴DE=CD=AB;
(2)如图所示,连接OC,FC,
设BE=CD=2x,OB=OC=OF=r,则OE=BE-BO=2x-r,EF=BF-BE=2r-2x
∵CD⊥EB,BF是圆O的直径,
∴,∠CEB=∠CEF=∠FCB=90°,
∴∠FBC+∠F=∠FCE+∠F=90°,
∴∠FBC=∠FCE;
∵,
∴,
∴,
解得,
∴;
(3)∵EF:BG=1:3,即
∴ ,即
∴,
解得,
∴,
∴,,
如图所示,以B为圆心,以BC所在的直线为x轴建立平面直角坐标系,分别过点A作AM⊥BC与M,过点G作GN⊥BC与N,连接FC,
∴,
∴,,
∵,
∴,,
∴,,
∴,,
∴G点坐标为(,),C点坐标为(,0);
∵,
∴,
∵∠ABC=∠ECB,
∴,
∴,
∵,
∴,
∴,
∴,
∴A点坐标为(,)
设直线CG的解析式为,直线AB的解析式为,
∴,,
∴,,
∴直线CG的解析式为,直线AB的解析式为,
联立,
解得,
∴H的坐标为(,),
∴.
【点睛】
本题主要考查了圆内接四边形的性质,平行四边形的性质与判定,等腰三角形的性质与判定,解直角三角形,一次函数与几何综合,垂径定理,勾股定理,两点距离公式,解题的关键在于能够正确作出辅助线,利用数形结合的思想求解.
【难点解析】2022年重庆市中考数学三年真题模拟 卷(Ⅱ)(精选): 这是一份【难点解析】2022年重庆市中考数学三年真题模拟 卷(Ⅱ)(精选),共22页。试卷主要包含了的相反数是,有下列说法等内容,欢迎下载使用。
【难点解析】2022年浙江省台州市中考数学真题模拟测评 (A)卷(精选): 这是一份【难点解析】2022年浙江省台州市中考数学真题模拟测评 (A)卷(精选),共19页。试卷主要包含了在中,,,则,下列各对数中,相等的一对数是,的相反数是等内容,欢迎下载使用。
【难点解析】2022年中考数学模拟真题练习 卷(Ⅱ)(精选): 这是一份【难点解析】2022年中考数学模拟真题练习 卷(Ⅱ)(精选),共19页。试卷主要包含了二次函数 y=ax2+bx+c等内容,欢迎下载使用。