【难点解析】2022年北京市燕山地区中考数学三年真题模拟 卷(Ⅱ)(精选)
展开2022年北京市燕山地区中考数学三年真题模拟 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在0,,1.333…,,3.14中,有理数的个数有( )
A.1个 B.2个 C.3个 D.4个
2、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:①;②;③抛物线与轴的另一个交点的坐标为;④方程有两个不相等的实数根.其中正确的个数为( )
A.个 B.个 C.个 D.个
3、已知,,且,则的值为( )
A.1或3 B.1或﹣3 C.﹣1或﹣3 D.﹣1或3
4、下列式中,与是同类二次根式的是( )
A. B. C. D.
5、如图,已知△A′B′C′与△ABC是位似图形,点O是位似中心,若A′是OA的中点,则△A′B'C′与△ABC的面积比是( )
A.1:4 B.1:2 C.2:1 D.4:1
6、如图,矩形ABCD中,点E,点F分别是BC,CD的中点,AE交对角线BD于点G,BF交AE于点H.则的值是( )
A. B. C. D.
7、若数a使关于x的方程=的解为非负数,使关于y的不等式组无解,则所有满足条件的整数a的值之和为( )
A.7 B.12 C.14 D.18
8、某三棱柱的三种视图如图所示,已知俯视图中,,下列结论中:①主视图中;②左视图矩形的面积为;③俯视图的正切值为.其中正确的个数为( )
A.个 B.个 C.个 D.个
9、如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=108°则∠BAE的度数为( )
A.120° B.108° C.132° D.72°
10、已知和是同类项,那么的值是( )
A.3 B.4 C.5 D.6
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图(1)是一个横断面为抛物线形状的拱桥,水面在l时,拱顶(拱桥洞的最高点)离水面3米,水面宽4米.如果按图(2)建立平面直角坐标系,那么抛物线的解析式是_____.
2、将一张长方形的纸按照如图所示折叠后,点C、D两点分别落在点、处,若EA平分,则_________.
3、若矩形ABCD的对角线AC,BD相交于点,且,,则矩形ABCD的面积为_____________.
4、等边的边长为2,P,Q分别是边AB,BC上的点,连结AQ,CP交于点O.以下结论:①若,则;②若,则;③若点P和点Q分别从点A和点C同时出发,以相同的速度向点B运动(到达点B就停止),则点O经过的路径长为,其中正确的是______(序号).
5、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).
(1)如图1,在BC上找一点P,使∠BAP=45°;
(2)如图2,作△ABC的高BH.
2、解下列方程:
(1)
(2)
3、如图,一次函数的图象与反比例函数的图象相交于A(1,3),B(3,n)两点,与两坐标轴分别相交于点P,Q,过点B作于点C,连接OA.
(1)求一次函数和反比例函数的解析式;
(2)求四边形ABCO的面积.
4、如图,已知在△ABC中,AB=AC,∠BAC=80°,AD⊥BC,AD=AB,联结BD并延长,交AC的延长线干点E,求∠ADE的度数.
5、如图,在△ABC中,已知D是BC边的中点,过点D的直线GF交AC于F,交AC的平行线BG于点G,DE⊥GF,交AC的延长线于点E,联结EG.
(1)说明BG与CF相等的理由.
(2)说明∠BGD与∠DGE相等的理由.
-参考答案-
一、单选题
1、D
【分析】
根据有理数的定义:整数和分数统称为有理数,进行求解即可.
【详解】
解:0是整数,是有理数;
是无限不循环小数,不是有理数;
是分数,是有理数;
是分数,是有理数;
3.14是有限小数,是分数,是有理数,
故选D.
【点睛】
此题考查有理数的定义,熟记定义并运用解题是关键.
2、C
【分析】
根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:①如图,开口向上,得,
,得,
抛物线与轴交于负半轴,即,
,
故①错误;
②如图,抛物线与轴有两个交点,则;
故②正确;
③由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,
故③正确;
④如图所示,当时,,
根的个数为与图象的交点个数,
有两个交点,即有两个根,
故④正确;
综上所述,正确的结论有3个.
故选:C.
【点睛】
主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
3、A
【分析】
由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.
【详解】
解:∵,,
,
∴x=1,y=-2,此时x-y=3;
x=-1,y=-2,此时x-y=1.
故选:A.
【点睛】
此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.
4、A
【分析】
先根据二次根式的性质化成最简二次根式,再看看被开方数是否相同即可.
【详解】
解:A、,即化成最简二次根式后被开方数相同(都是5),所以是同类二次根式,故本选项符合题意;
B、最简二次根式和的被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
C、,即化成最简二次根式后被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
D、,即化成最简二次根式后被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
故选:A.
【点睛】
本题考查了二次根式的性质与化简和同类二次根式的定义,能熟记同类二次根式的定义是解此题的关键.
5、A
【分析】
根据位似图形的概念得到△A′B′C′∽△ABC,A′B′∥AB,根据△OA′B′∽△OAB,求出,根据相似三角形的性质计算,得到答案.
【详解】
解:∵△A′B′C′与△ABC是位似图形,
∴△A′B′C′∽△ABC,A′B′∥AB,
∴△OA′B′∽△OAB,
∴,
∴△A′B'C′与△ABC的面积比为1:4,
故选:A.
【点睛】
本题考查的是位似变换的概念、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.
6、B
【分析】
取的中点,连接,交于点,则,,由,得,由,得,,则,,从而解决问题.
【详解】
解:矩形中,点,点分别是,的中点,
,,,
取的中点,连接,交于点,如图,
则是的中位线,
,,
,,
,
,
,
,
,
,,
,,
,,
,
,
故选:B.
【点睛】
本题主要考查了矩形的性质,相似三角形的判定与性质,利用相似三角形的性质表示出和的长是解题的关键.
7、C
【分析】
第一步:先用a的代数式表示分式方程的解.再根据方程的解为非负数,x-3≠0,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m的取值范围进行综合考虑确定最后m的取值范围,最后根据a为整数确定最后结果.
【详解】
解:,
2a-8=x-3,
x=2a-5,
∵方程的解为非负数,x-3≠0,
∴,
解得a≥且a≠4,
,
解不等式组得:,
∵不等式组无解,
∴5-2a≥-7,
解得a≤6,
∴a的取值范围:≤a≤6且a≠4,
∴满足条件的整数a的值为3、5、6,
∴3+5+6=14,
故选:C.
【点睛】
本题考查分式方程的解、解一元一次不等式组、解一元一次不等式,掌握用含a的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m的取值范围是解题关键.
8、A
【分析】
过点A作AD⊥BC与D,根据BD=4,,可求AD=BD,根据,得出BC=7,可得DC=BC-BD=7-4=3可判断①;根据左视图矩形的面积为3×6=可判断②;根据tanC可判断③.
【详解】
解:过点A作AD⊥BC与D,
∵BD=4,,
∴AD=BD,
∵,
∴,
∴BC=7,
∴DC=BC-BD=7-4=3,
∴①主视图中正确;
∴左视图矩形的面积为3×6=,
∴②正确;
∴tanC,
∴③正确;
其中正确的个数为为3个.
故选择A.
【点睛】
本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型.
9、C
【分析】
根据等边三角形的性质可得,,然后利用SSS即可证出,从而可得,,,然后求出,即可求出的度数.
【详解】
解:△是等边三角形,
,,
在与中
,
,
,,,
,
,
故选C
【点睛】
此题考查的是等边三角形的性质和全等三角形的判定及性质,掌握等边三角形的性质、利用SSS判定两个三角形全等和全等三角形的对应角相等是解决此题的关键.
10、C
【分析】
把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.
【详解】
由题意知:n=2,m=3,则m+n=3+2=5
故选:C
【点睛】
本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.
二、填空题
1、
【分析】
设出抛物线方程y=ax2(a≠0)代入坐标(-2,-3)求得a.
【详解】
解:设出抛物线方程y=ax2(a≠0),由图象可知该图象经过(-2,-3)点,
∴-3=4a,
a=-,
∴抛物线解析式为y=-x2.
故答案为:.
【点睛】
本题主要考查二次函数的应用,解题的关键在于能够熟练掌握待定系数法求解二次函数解析式.
2、120°
【分析】
由折叠的性质,则,由角平分线的定义,得到,然后由邻补角的定义,即可求出答案.
【详解】
解:根据题意,由折叠的性质,则
,
∵EA平分,
∴,
∵,
∴,
∴;
故答案为:120°.
【点睛】
本题考查了折叠的性质,角平分线的定义,邻补角的定义,解题的关键是掌握所学的知识,正确的求出的度数.
3、
【分析】
如图,过点O作,根据矩形的对角线相等且互相平分可得,,,由得,利用勾股定理求出,由矩形面积得解.
【详解】
如图,过点O作,
∵四边形ABCD是矩形,
∴,,,
∵,
∴,
∴,
∴,
∴,,
∴.
故答案为:.
【点睛】
本题考查矩形的性质与勾股定理,掌握矩形的性质是解题的关键.
4、①③
【分析】
①根据全等三角形的性质可得∠BAQ=∠ACP,再由三角形的外角性质即可求解;第②结论有两种情况,准确画出图之后再来计算和判断;③要先判断判断轨迹(通过对称性或者全等)在来计算路径长.
【详解】
解:∵为等边三角形,
∴ ,
∵,
∴ ,
∴ ,
∵ ,
∴ ,
∴ ,
故①正确;
当时可分两种情况,
第一种,如①所证时,且 时,
∵,
∴ ,
第二种如图,时,若 时,则大小无法确定,
故②错误;
由题意知 ,
∵为等边三角形,
∴ ,
∴ ,
∴点O运动轨迹为AC边上中线,
∵的边长为2,
∴AC上边中线为 ,
∴点O经过的路径长为,
故③正确;
故答案为:①③.
【点睛】
此题是三角形综合题,考查了等边三角形的性质、全等三角形的判定与性质、三角形的外角性质等知识的综合应用.本题综合性强,熟练掌握等边三角形的性质是解题关键.
5、##
【分析】
设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.
【详解】
解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,
设去年甲、乙、丙三种水果的种植面积分别为:
去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,
设去年甲、乙、丙三种水果的平均亩产量分别为:
则今年甲品种水果的平均亩产量为:
乙品种水果的平均亩产量为: 丙品种的平均亩产量为
设今年的种植面积分别为:
甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,
①,②,
解得:
又丙品种水果增加的产量占今年水果总产量的,
解得:
所以三种水果去年的种植总面积与今年的种植总面积之比为:
故答案为:
【点睛】
本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.
三、解答题
1、(1)见解析;(2)见解析
【分析】
(1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;
(2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.
【详解】
解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求,
理由如下:
根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,
∴△ABM≌△BNQ,
∴AB=BN,∠ABM=∠BNQ,
∴∠BAP=∠BNP,
∵∠NBQ+∠BNQ=90°,
∴∠ABM +∠BNQ=90°,
∴∠ABN=90°,
∴∠BAP=∠BNP=45°;
(2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.
理由如下:
过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,
∴△ACD≌△QBG,
∴∠ACD=∠QBG,
∵∠QBG+∠BQG=90°,
∴∠ACD +∠BQG=90°,
∴∠CHQ=90°,
∴BH⊥AC,即BH为△ABC的高.
【点睛】
本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.
2、
(1);
(2).
【分析】
(1)去括号,移项合并,系数化1即可;
(2)首先分母化整数分母,去分母,去括号,移项,合并,系数化1即可.
(1)
解:,
去括号得:,
移项合并得:,
系数化1得:;
(2)
解:,
小数分母化整数分母得:,
去分母得:,
去括号得:,
移项得:,
合并得:,
系数化1得:.
【点睛】
本题考查一元一次方程的解法,掌握解一元一次方程的方法与步骤是解题关键.
3、(1)一次函数的关系式为y=-x+4,反比例函数的关系式为y=;(2)四边形ABCO的面积为.
【分析】
(1)将点A坐标代入,确定反比例函数的关系式,进而确定点B坐标,把点A、B的坐标代入求出一次函数的关系式;
(2)将四边形ABCO的面积转化为S△AOM+S梯形AMCB,利用坐标及面积的计算公式可求出结果.
【详解】
解:(1)A(1,3)代入y=得,m=3,
∴反比例函数的关系式为y=;
把B(3,n)代入y=得,n=1,
∴点B(3,1);
把点A(1,3),B(3,1)代入一次函数y=kx+b得,
,
解得:,
∴一次函数的关系式为:y=-x+4;
答:一次函数的关系式为y=-x+4,反比例函数的关系式为y=;
(2)如图,过点B作BM⊥OP,垂足为M,
由题意可知,OM=1,AM=3,OC=3,MC=OC-OM=3-1=2,
∴S四边形ABCO=S△AOM+S梯形AMCB,
=×1×3+×(1+3)×2
=.
【点睛】
本题考查了一次函数、反比例函数的图象和性质,把点的坐标代入是常用的方法,将坐标与线段的长的相互转化是计算面积的关键.
4、110°
【分析】
根据等腰三角形三线合一的性质可求∠BAD=∠CAD=∠BAC=40°,根据等腰三角形的性质可求∠BDA,再根据三角形内角和定理即可求解.
【详解】
解:∵AB=AC,∠BAC=80°,AD⊥BC,
∴∠BAD=∠CAD=∠BAC=40°,
∵AD=AB,
∴∠BDA=×(180°﹣40°)=70°,
∴∠ADE=180°﹣∠BDA=180°﹣70°=110°.
【点睛】
本题考查的是三角形的外角的性质,等腰三角形的性质,掌握“等边对等角,等腰三角形的三线合一”是解本题的关键.
5、
(1)见祥解
(2)见祥解
【分析】
(1)求出BD=DC,∠GBD=∠DCF,证出△BDG≌△CDF即可;
(2)根据线段垂直平分线性质得出EF=EG,求出∠DFE=∠DGE,∠DFE=∠BGD,即可得出答案.
(1)
解 ∵D为BC中点,
∴BD=DC(中点的定义),
∵BG∥FC(已知),
∴∠GBD=∠DCF(两直线平行,内错角相等),
在△BDG和△CDF中,
,
∴△BDG≌△CDF(ASA),
∴BG=CF(全等三角形对应边相等);
(2)
解:∵D是BC边的中点,DE⊥GF,即DE为线段GF的中垂线,
∴EF=EG,
∴∠DFE=∠DGE(等边对等角),)
∵∠DFE=∠BGD(全等三角形对应角相等),
∴∠BGD=∠DGE(等量代换).
【点睛】
本题考查全等三角形的判定与性质,线段垂直平分线的性质.解答本题的关键是明确题意,找出所求问题需要的条件,证明三角形全等.
【真题汇编】2022年北京市燕山地区中考数学真题汇总 卷(Ⅱ)(精选): 这是一份【真题汇编】2022年北京市燕山地区中考数学真题汇总 卷(Ⅱ)(精选),共23页。试卷主要包含了在平面直角坐标系xOy中,点A,如图,OM平分,,,则.,抛物线的顶点坐标是等内容,欢迎下载使用。
【真题汇总卷】2022年北京市燕山地区中考数学模拟真题测评 A卷(含答案详解): 这是一份【真题汇总卷】2022年北京市燕山地区中考数学模拟真题测评 A卷(含答案详解),共25页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
【真题汇总卷】2022年北京市燕山地区中考数学模拟专项测试 B卷(含答案及详解): 这是一份【真题汇总卷】2022年北京市燕山地区中考数学模拟专项测试 B卷(含答案及详解),共28页。试卷主要包含了若,,且a,b同号,则的值为等内容,欢迎下载使用。