【难点解析】2022年四川省遂宁市中考数学三年真题模拟 卷(Ⅱ)(含答案及详解)
展开2022年四川省遂宁市中考数学三年真题模拟 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
A.(-2,3)或(-2,-3) B.(-2,3)
C.(-3,2)或(-3,-2) D.(-3,2)
2、下列关于整式的说法错误的是( )
A.单项式的系数是-1 B.单项式的次数是3
C.多项式是二次三项式 D.单项式与ba是同类项
3、若,则的值为( )
A. B.8 C. D.
4、若+(3y+4)2=0,则yx的值为( )
A. B.- C.- D.
5、在2,1,0,-1这四个数中,比0小的数是( )
A.2 B.0 C.1 D.-1
6、如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是( )
A. B. C. D.
7、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )
A.cm B.2cm C.1cm D.2cm
8、下列利用等式的性质,错误的是( )
A.由,得到 B.由,得到
C.由,得到 D.由,得到
9、下列说法正确的有( )
①两点之间的所有连线中,线段最短;
②相等的角叫对顶角;
③过一点有且只有一条直线与已知直线平行;
④若AC=BC,则点C是线段AB的中点;
⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.
A.1个 B.2个 C.3个 D.4个
10、下列各组数据中,能作为直角三角形的三边长的是( )
A.,, B.4,9,11 C.6,15,17 D.7,24,25
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知x为不等式组的解,则的值为______.
2、如图,AC=12cm,AB=5cm,点D是BC的中点,那么CD=________________cm.
3、比较大小:______(填“>”,“<”,“=”)
4、已知是方程的解,则a的值是______.
5、已知某数的相反数是﹣2,那么该数的倒数是 __________________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点D是边AC上的动点,以CD为边在△ABC外作正方形CDEF,分别联结AE、BE,BE与AC交于点G
(1)当AE⊥BE时,求正方形CDEF的面积;
(2)延长ED交AB于点H,如果△BEH和△ABG相似,求sin∠ABE的值;
(3)当AG=AE时,求CD的长.
2、先化简,再求值:
(1),其中;
(2),其中,.
3、在平面直角坐标系中,对于点,,将点关于直线对称得到点,当时,将点向上平移个单位,当时,将点向下平移个单位,得到点,我们称点为点关于点的对称平移点.
例如,如图已知点,,点关于点的对称平移点为.
(1)已知点,,
①点关于点的对称平移点为________(直接写出答案).
②若点为点关于点的对称平移点,则点的坐标为________.(直接写出答案)
(2)已知点在第一、三象限的角平分线上,点的横坐标为,点的坐标为.点为点关于点的对称平移点,若以,,为顶点的三角形围成的面积为1,求的值.
4、平面上有三个点A,B,O.点A在点O的北偏东方向上,,点B在点O的南偏东30°方向上,,连接AB,点C为线段AB的中点,连接OC.
(1)依题意补全图形(借助量角器、刻度尺画图);
(2)写出的依据:
(3)比较线段OC与AC的长短并说明理由:
(4)直接写出∠AOB的度数.
5、(1)计算:.
(2)用适当的方法解一元二次方程:.
-参考答案-
一、单选题
1、A
【分析】
根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
【详解】
解:∵点P在y轴左侧,
∴点P在第二象限或第三象限,
∵点P到x轴的距离是3,到y轴距离是2,
∴点P的坐标是(-2,3)或(-2,-3),
故选:A.
【点睛】
此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
2、C
【分析】
根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可.
【详解】
解:A、单项式的系数是-1,说法正确,不符合题意;
B、单项式的次数是3,说法正确,不符合题意;
C、多项式是三次二项式,说法错误,符合题意;
D、单项式与ba是同类项,说法正确,不符合题意;
故选C.
【点睛】
本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.
3、D
【分析】
根据多项式乘以多项式展开,根据多项式相等即可求得对应字母的值,进而代入代数式求解即可.
【详解】
解:,
,
,,
,,
解得:,,
.
故选:D.
【点睛】
本题考查了多项式乘以多项式,负整数指数幂,掌握以上知识是解题的关键.
4、A
【分析】
根据绝对值的非负性及偶次方的非负性得到x-2=0,3y+4=0,求出x、y的值代入计算即可
【详解】
解:∵+(3y+4)2=0,
∴x-2=0,3y+4=0,
∴x=2,y=,
∴,
故选:A.
【点睛】
此题考查了已知字母的值求代数式的值,正确掌握绝对值的非负性及偶次方的非负性是解题的关键.
5、D
【分析】
根据正数大于零,零大于负数,即可求解.
【详解】
解:在2,1,0,-1这四个数中,比0小的数是-1
故选:D
【点睛】
本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.
6、D
【分析】
旋转阴影部分后,阴影部分是一个半圆,根据概率公式可求解
【详解】
解:旋转阴影部分,如图,
∴该点取自阴影部分的概率是
故选:D
【点睛】
本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
7、B
【分析】
由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.
【详解】
解:∵菱形ABCD的周长为8cm,
∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AC=AB=2cm,
∴OA=1(cm),
在Rt△AOB中,由勾股定理得:OB===(cm),
∴BD=2OB=2(cm),
故选:B.
【点睛】
此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.
8、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
9、B
【分析】
根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.
【详解】
解:①两点之间的所有连线中,线段最短,正确;
②相等的角不一定是对顶角,但对顶角相等,故本小题错误;
③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;
④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,
⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;
所以,正确的结论有①⑤共2个.
故选:B.
【点睛】
本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.
10、D
【分析】
由题意直接依据勾股定理的逆定理逐项进行判断即可.
【详解】
解:A.∵,
∴,,为边不能组成直角三角形,故本选项不符合题意;
B.∵42+92≠112,
∴以4,9,11为边不能组成直角三角形,故本选项不符合题意;
C.∵62+152≠172,
∴以6,15,17为边不能组成直角三角形,故本选项不符合题意;
D.∵72+242=252,
∴以7,24,25为边能组成直角三角形,故本选项符合题意;
故选:D.
【点睛】
本题考查勾股定理的逆定理,能熟记勾股定理的逆定理是解答此题的关键,注意掌握如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.
二、填空题
1、2
【分析】
解不等式组得到x的范围,再根据绝对值的性质化简.
【详解】
解:,
解不等式①得:,
解不等式②得:,
∴不等式组的解集为:,
∴
=
=
=2
故答案为:2.
【点睛】
本题考查了解不等式组,绝对值的性质,解题的关键是解不等式组得到x的范围.
2、
【分析】
首先根据线段的和差求出BC的长,再利用线段的中点可得CD.
【详解】
∵AC=12cm,AB=5cm,
∴BC=AC﹣AB=7cm,
∵点D是BC的中点,
∴CD=BC=cm.
故答案为:.
【点睛】
本题考查线段的和差,掌握线段中点的定义是解题关键.
3、<
【分析】
根据绝对值的性质去绝对值符号后,再比较大小即可.
【详解】
解:,,
,
.
故答案为:.
【点睛】
此题主要考查了有理数大小比较,解题的关键是熟记有理数大小比较的方法.
4、4
【分析】
把代入方程得到关于的一元一次方程,依次去括号,移项,合并同类项,系数化为1,即可得到答案.
【详解】
解:把代入方程得:
,
去括号得:,
系数化为1得:,
故答案为:4.
【点睛】
本题考查了一元一次方程的解,解题的关键是正确掌握解一元一次方程的方法.
5、
【分析】
根据相反数与倒数的概念可得答案.
【详解】
解:∵某数的相反数是﹣2,
∴这个数为2,
∴该数的倒数是.
故答案为:.
【点睛】
本题考查了相反数与倒数的概念,掌握其概念是解决此题的关键.
三、解答题
1、
(1)
(2)
(3)
【分析】
(1)证明△ADE≌△BFE(ASA),推出AD=BF,构建方程求出CD即可.
(2)过点A作AM⊥BE于M,想办法求出AB,AM即可解决问题.
(3)如图3中,延长CA到N,使得AN=AG.设CD=DE=EF=CF=x,则AD=12﹣x,DN=BF=5+x,在Rt△ADE中,利用勾股定理求出x即可解决问题.
(1)
如图1中,
∵四边形ABCD是正方形,
∴CD=DE=EF=CF,∠CDE=∠DEF=∠F=90°,
∵AE⊥BE,
∴∠AEB=∠DEF=90°,
∴∠AED=∠BEF,
∵∠ADE=∠F=90°,DE=FE,
∴△ADE≌△BFE(ASA),
∴AD=BF,
∴AD=5+CF=5+CD,
∵AC=CD+AD=12,
∴CD+5+CD=12,
∴CD=,
∴正方形CDEF的面积为.
(2)
如图2中,
∵∠ABG=∠EBH,
∴当∠BAG=∠BEH=∠CBG时,△ABG∽△EBH,
∵∠BCG=∠ACB,∠CBG=∠BAG,
∴△CBG∽△CAB,
∴=CG•CA,
∴CG=,
∴BG===,
∴AG=AC﹣CG=,
过点A作AM⊥BE于M,
∵∠BCG=∠AMG=90°,∠CGB=∠AGM,
∴∠GAM=∠CBG,
∴cos∠GAM=cos∠CBG=,
∴AM=,
∵AB==13,
∴sin∠ABM=.
(3)
如图3中,延长CA到N,使得AN=AG.
∵AE=AG=AN,
∴∠GEN=90°,
由(1)可知,△NDE≌△BFR,
∴ND=BF,
设CD=DE=EF=CF=x,则AD=12﹣x,DN=BF=5+x,
∴AN=AE=5+x﹣(12﹣x)=2x﹣7,
在Rt△ADE中,
∵,
∴,
∴x=或(舍弃),
∴CD=.
【点睛】
本题考查了正方形的性质,勾股定理,三角形的全等,三角形相似的性质和判定,一元二次方程的解法,三角函数的正弦值,熟练掌握勾股定理,准确解一元二次方程,正弦值是解题的关键.
2、
(1);
(2);
【分析】
(1)先根据合并同类项化简,进而代数式求值即可;
(2)先去括号,再合并同类项,进而将的值代入求解即可.
(1)
当时,原式
(2)
当,时,原式
【点睛】
本题考查了整式的加减中的化简求值,正确的计算是解题的关键.
3、
(1)①(6,4);②(3,-2)
(2)的值为
【分析】
(1)由题意根据点P为点M关于点N的对称平移点的定义画出图形,可得结论;
(2)根据题意分两种情形:m>0,m<0,利用三角形面积公式,构建方程求解即可.
(1)
解:①如图1中,点关于点的对称平移点为.
故答案为:.
②若点为点关于点的对称平移点,则点的坐标为.
故答案为:;
(2)
解:如图2中,当时,四边形是梯形,
,,,
,
或(舍弃),
当时,同法可得,
综上所述,的值为.
【点睛】
本题考查坐标与图形变化-旋转,三角形的面积公式,轴对称,平移变换等知识,解题的关键是理解新定义,学会利用参数构建方程解决问题.
4、(1)见解析;(2)三角形的两边之和大于第三边;(3) ,理由见解析;(4)70°
【分析】
(1)根据题意画出图形,即可求解;
(2)根据三角形的两边之和大于第三边,即可求解;
(3)利用刻度尺测量得: ,即可求解;
(4)用180°减去80°,再减去30°,即可求解.
【详解】
解:(1)根据题意画出图形,如图所示:
(2)在△AOB中,因为三角形的两边之和大于第三边,
所以;
(3) ,理由如下:利用刻度尺测量得: ,
AC=2cm,
∴;
(4)根据题意得: .
【点睛】
本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.
5、(1)2+;(2),
【分析】
(1)先计算零指数幂,分母有理化,负指数幂,特殊三角函数值,再合并同类项即可;
(2)因式分解法解一元二次方程.
【详解】
(1)解:,
,
,
;
(2)解:原方程分解因式得,
或,
解得,.
【点睛】
本题考查含有锐角三角函数的实数混合运算,零指数幂,负指数幂,二次根式分母有理化,一元二次方程的解法,掌握含有锐角三角函数的实数混合运算,零指数幂,负指数幂,二次根式分母有理化,一元二次方程的解法.
【真题汇总卷】2022年四川省遂宁市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解): 这是一份【真题汇总卷】2022年四川省遂宁市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解),共23页。试卷主要包含了下列利用等式的性质,错误的是,下列说法正确的是等内容,欢迎下载使用。
【难点解析】2022年四川省遂宁市中考数学真题模拟测评 (A)卷(含详解): 这是一份【难点解析】2022年四川省遂宁市中考数学真题模拟测评 (A)卷(含详解),共23页。试卷主要包含了已知ax2+24x+b=,下列说法正确的有等内容,欢迎下载使用。
【难点解析】中考数学模拟真题 (B)卷(含答案详解): 这是一份【难点解析】中考数学模拟真题 (B)卷(含答案详解),共22页。试卷主要包含了下列说法中,不正确的是,下列利用等式的性质,错误的是,下列方程组中,二元一次方程组有,二次函数y=,如图,OM平分,,,则.,下列命题中,是真命题的是等内容,欢迎下载使用。

