


【难点解析】2022年四川省遂宁市中考数学模拟测评 卷(Ⅰ)(含答案及详解)
展开2022年四川省遂宁市中考数学模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若实数m使关于x的不等式组有解且至多有3个整数解,且使关于y的分式方程1的解满足﹣3≤y≤4,则满足条件的所有整数m的和为( )
A.17 B.20 C.22 D.25
2、下列方程中,关于x的一元二次方程的是( )
A.x2-1=2x B.x3+2x2=0 C. D.x2-y+1=0
3、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )
A.1 B.2 C.3 D.4
4、下列对一元二次方程x2-2x-4=0根的情况的判断,正确的是( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.没有实数根 D.无法判断
5、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )
A.增加10% B.增加4% C.减少4% D.大小不变
6、已知,则代数式的值是( )
A.﹣3 B.3 C.9 D.18
7、下列计算正确的是( )
A. B. C. D.
8、-6的倒数是( )
A.-6 B.6 C.±6 D.
9、如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是( )
A. B. C. D.
10、下列关于x的方程中一定有实数根的是( )
A.x2=﹣x﹣1 B.2x2﹣6x+9=0 C.x2+mx+2=0 D.x2﹣mx﹣2=0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一名男生推铅球,铅球行进的高度y(单位:米)与水平距离x(单位:米)之间的关系为,则这名男生这次推铅球的成绩是______米.
2、有这样一道题:“栖树一群鸦,鸦树不知数;三只栖一树,五只没去处;五只栖一树,闲了一棵树;请你动动脑,算出鸦树数.”前三句的意思是:一群乌鸦在树上栖息,若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦.请你动动脑,该问题中乌鸦有_________只.
3、将0.094932用四舍五入法取近似值精确到百分位,其结果是______.
4、规定运算*,使x*y=,如果1*2=1,那么3*4=___.
5、若与互为相反数,则代数式的值是_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知点、分别在中的边、的延长线上,且.
(1)如果,,,求的长;
(2)如果,,,过点作,垂足为点,求的长.
2、解方程(组)
(1);
(2).
3、一艘轮船在相距120千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,从乙地到甲地逆流航行用10小时.(请列方程或方程组解答)
(1)求该轮船在静水中的速度和水流速度;
(2)若在甲、乙两地之间的丙地新建一个码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?
4、定义一种新运算“”,规定:等式右边的运算就是加、减、乘、除四则运算,例如:,.
(1)求的值;
(2)若,求x的值.
5、某商店销售一种商品,经市场调查发现:在实际销售中,售价x为整数,且该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x(元/件)、月销售量y(件)、月销售利润w(元)的部分对应值如表:
售价x(元/件) | 40 | 45 |
月销售量y(件) | 300 | 250 |
月销售利润w(元) | 3000 | 3750 |
注:月销售利润=月销售量×(售价-进价)
(1)求y关于x的函数表达式;
(2)当该商品的售价是多少元时,月销售利润最大?并求出最大利润;
(3)现公司决定每销售1件商品就捐赠m元利润()给“精准扶贫”对象,要求:在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x的增大而增大,求m的取值范围.
-参考答案-
一、单选题
1、B
【分析】
根据不等式组求出m的范围,然后再根据分式方程求出m的范围,从而确定的m的可能值.
【详解】
解:由不等式组可知:x≤5且x≥,
∵有解且至多有3个整数解,
∴2<≤5,
∴2<m≤8,
由分式方程可知:y=m-3,
将y=m-3代入y-2≠0,
∴m≠5,
∵-3≤y≤4,
∴-3≤m-3≤4,
∵m是整数,
∴0≤m≤7,
综上,2<m≤7,
∴所有满足条件的整数m有:3、4、6、7,共4个,
和为:3+4+6+7=20.
故选:B.
【点睛】
本题考查了学生的计算能力以及推理能,解题的关键是根据不等式组以及分式方程求出m的范围,本题属于中等题型.
2、A
【分析】
只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.
【详解】
解:A、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;
B、未知数最高次数是3,不是关于x的一元二次方程,不符合题意;
C、为分式方程,不符合题意;
D、含有两个未知数,不是一元二次方程,不符合题意
故选:A.
【点睛】
本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.
3、A
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
4、B
【分析】
根据方程的系数结合根的判别式,可得出Δ=20>0,进而可得出方程x2-2x-4=0有两个不相等的实数根.
【详解】
解:∵Δ=(-2)2-4×1×(-4)= 20>0,
∴方程x2-2x-4=0有两个不相等的实数根.
故选:B.
【点睛】
本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.
5、B
【分析】
设长方形草地的长为x,宽为y,则可求得增加后长及减少后的宽,从而可求得现在的面积,与原面积比较即可得到答案.
【详解】
设长方形草地的长为x,宽为y,则其面积为xy;增加后长为(1+30%)x,减少后的宽为(1-20%)y,此时的面积为(1+30%)x×(1-20%)y=1.04xy,1.04xy−xy=0.04xy,0.04xy÷xy×100%=4%.即这块长方形草地的面积比原来增加了4%.
故选:B
【点睛】
本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键.
6、C
【分析】
由已知得到,再将变形,整体代入计算可得.
【详解】
解:∵,
∴,
∴
=
=
=9
故选:C.
【点睛】
本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.
7、D
【分析】
直接根据合并同类项运算法则进行计算后再判断即可.
【详解】
解:A. ,选项A计算错误,不符合题意;
B. ,选项B计算错误,不符合题意;
C. ,选项C计算错误,不符合题意;
D. ,计算正确,符合题意
故选:D
【点睛】
本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.
8、D
【分析】
根据倒数的定义,即可求解.
【详解】
解:∵-6的倒数是-.
故选:D.
【点睛】
本题主要考查了倒数,关键是掌握乘积是1的两数互为倒数.
9、D
【分析】
旋转阴影部分后,阴影部分是一个半圆,根据概率公式可求解
【详解】
解:旋转阴影部分,如图,
∴该点取自阴影部分的概率是
故选:D
【点睛】
本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
10、D
【分析】
分别求出方程的判别式,根据判别式的三种情况分析解答.
【详解】
解:A、∵x2=﹣x﹣1,
∴,
∵,
∴该方程没有实数根;
B、2x2﹣6x+9=0,
∵,
∴该方程没有实数根;
C、x2+mx+2=0,
∵,无法判断与0的大小关系,
∴无法判断方程根的情况;
D、x2﹣mx﹣2=0,
∵,
∴方程一定有实数根,
故选:D.
【点睛】
此题考查了一元二次方程根的情况,正确掌握判别式的计算方法及根的三种情况是解题的关键.
二、填空题
1、10
【分析】
将代入解析式求的值即可.
【详解】
解:∵
∴
解得:(舍去),
故答案为:10.
【点睛】
本题考查了二次函数的应用.解题的关键在于正确的解一元二次方程.所求值要满足实际.
2、20
【分析】
设乌鸦有x只,树y棵,直接利用若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦列出方程组,进而得出答案.
【详解】
解:设乌鸦x只,树y棵.依题意可列方程组:
.
解得,
所以,乌鸦有20只
故答案为:20.
【点睛】
此题主要考查了二元一次方程组的应用,正确得出方程组是解题关键.
3、0.09
【分析】
把千分位上的数字4进行四舍五入即可.
【详解】
解:将0.094932用四舍五入法取近似值精确到百分位,其结果是0.09.
故答案为:0.09.
【点睛】
本题考查了近似数和有效数字,解题的关键是掌握近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.
4、##
【分析】
根据新定义求解A的值,得新定义式为x*y=,然后再将代入代数式求解即可.
【详解】
解:∵1*2=1
∴
解得:A=4
∴x*y=
∴3*4
=
.
故答案为:.
【点睛】
本题考查了新定义.解题的关键在于正确的理解新定义式的含义.
5、2
【分析】
利用互为相反数的两个数的和为0,计算a的值,代入求值即可.
【详解】
∵与互为相反数,
∴3a-7+2a+2=0,
解得a=1,
∴
=1-2+3
=2,
∴代数式的值是2,
故答案为:2.
【点睛】
本题考查了相反数的性质,代数式的值,利用互为相反数的两个数的和为零确定字母的值是解题的关键.
三、解答题
1、
(1)8;
(2).
【分析】
(1)根据,得出∠E=∠C,∠EDA=∠B,可证△DEA∽△BCA,得出,可求,根据,得出,求BC即可;
(2)根据,得出△DEA∽△BCA,得出,根据,得出,,在中,,代入数据得出,即可求出DF
(1)
解:∵,
∴∠E=∠C,∠EDA=∠B,
∴△DEA∽△BCA,
∴,
∵,,
∴,
∵,
∴.
∴.
(2)
解:∵,
∴△DEA∽△BCA,
∴,
∵,
∴,
∵,
∴,
∴,
∵,垂足为点,
∴.
在中,,
即,
∴.
【点睛】
本题考查平行线性质,三角形相似判定与性质,锐角三角函数,掌握平行线性质,三角形相似判定与性质,锐角三角函数是解题关键.
2、
(1)
(2)
【分析】
(1)方程去分母,去括号,移项合并,把m系数化为1,即可求出解;
(2)把原方程组整理后,再利用加减消元法解答即可.
【小题1】
解:,
去分母得:,
去括号得:,
移项合并得:
解得:;
【小题2】
方程组整理得:,
①×5-②得:,
解得:,代入①中,
解得:,
所以原方程组的解为:.
【点睛】
此题考查了解一元一次方程以及解二元一次方程组,掌握消元的思想和消元的方法是解题的关键,消元的方法有:代入消元法与加减消元法.
3、
(1)静水中的速度是16千米/小时,水流速度是4千米/小时
(2)75千米
【分析】
(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,根据路程=速度×时间,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设甲、丙两地相距a千米,则乙、丙两地相距(120-a)千米,根据时间=路程÷速度,即可得出关于a的一元一次方程,解之即可得出结论.
【小题1】
解:设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,
依题意,得:,
解得:,
答:该轮船在静水中的速度是16千米/小时,水流速度是4千米/小时.
【小题2】
设甲、丙两地相距a千米,则乙、丙两地相距(120-a)千米,
依题意,得:,
解得:a=75,
答:甲、丙两地相距75千米.
【点睛】
本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.
4、
(1)-43
(2)3
【分析】
(1)根据定义变形,计算可得结果;
(2)根据定义变形,得到方程,求出x值即可.
【小题1】
解:由题意可得:
=
=
=
=;
【小题2】
∵
=
=
=
=2
解得:x=3.
【点睛】
本题考查了新定义运算,理解定义,结合新定义,能将所求问题转化为一元一次方程是解题的关键.
5、
(1)y=-10x+700
(2)当该商品的售价是50元时,月销售利润最大,最大利润是4000元
(3)
【分析】
(1)依题意设y=kx+b,用待定系数法得到结论;
(2)该商品进价是40-3000÷300=30,月销售利润为w元,列出函数解析式,根据二次函数的性质求解;
(3)设利润为w′元,列出函数解析式,根据二次函数的性质求解.
(1)
解:设y=kx+b(k,b为常数,k≠0),
根据题意得:,
解得:,
∴y=-10x+700;
(2)
解:当该商品的进价是40-3000÷300=30元,
设当该商品的售价是x元/件时,月销售利润为w元,
根据题意得:w=y(x-30)=(x-30)(-10x+700)
=-10x2+1000 x-21000=-10(x-50)2+4000,
∴当x=50时w有最大值,最大值为4000
答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元;
(3)
解:设利润为w′元,由题意得,
w′=y(x-30-m)
=(x-30-m)(-10x+700)
=-10x2+1000 x+10mx -21000-700m,
∴对称轴是直线x=,
∵-10<0,
∴抛物线开口向下,
∵在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x的增大而增大,
∴,
解得m≥4,
∵,
∴.
【点睛】
本题考查了一次函数的应用,以及二次函数的应用,熟练掌握二次函数的性质是解答本题的关键.
【难点解析】2022年邯郸永年区中考数学模拟专项测评 A卷(含详解): 这是一份【难点解析】2022年邯郸永年区中考数学模拟专项测评 A卷(含详解),共26页。试卷主要包含了若,则的值为,已知,,,则等内容,欢迎下载使用。
【真题汇编】2022年四川省遂宁市中考数学模拟专项测评 A卷(含详解): 这是一份【真题汇编】2022年四川省遂宁市中考数学模拟专项测评 A卷(含详解),共18页。试卷主要包含了下列说法正确的是,下列计算正确的是,已知,,且,则的值为等内容,欢迎下载使用。
【难点解析】2022年四川省遂宁市中考数学真题模拟测评 (A)卷(含详解): 这是一份【难点解析】2022年四川省遂宁市中考数学真题模拟测评 (A)卷(含详解),共23页。试卷主要包含了已知ax2+24x+b=,下列说法正确的有等内容,欢迎下载使用。