【难点解析】2022年北京市朝阳区中考数学模拟真题 (B)卷(含答案解析)
展开2022年北京市朝阳区中考数学模拟真题 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列利用等式的性质,错误的是( )
A.由,得到 B.由,得到
C.由,得到 D.由,得到
2、已知,,且,则的值为( )
A.1或3 B.1或﹣3 C.﹣1或﹣3 D.﹣1或3
3、若,则的值是( )
A. B.0 C.1 D.2022
4、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第1次操作;做第2次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续操作下去,从数串2,9,7开始操作第2022以后所产生的那个新数串的所有数之和是( )
A.20228 B.10128 C.5018 D.2509
5、下列式中,与是同类二次根式的是( )
A. B. C. D.
6、下列图形是中心对称图形的是( ).
A. B.
C. D.
7、如图,是多功能扳手和各部分功能介绍的图片.阅读功能介绍,计算图片中∠α的度数为( )
A.60° B.120° C.135° D.150°
8、如图,OM平分,,,则( ).
A.96° B.108° C.120° D.144°
9、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:①;②;③抛物线与轴的另一个交点的坐标为;④方程有两个不相等的实数根.其中正确的个数为( )
A.个 B.个 C.个 D.个
10、在0,,1.333…,,3.14中,有理数的个数有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点、点是线段上的两个点,且,如果AB=5cm,CD=1cm,那么的长等于_______cm.
2、已知线段,延长AB至点C,使,反向延长AC至点D,使,则CD的长为__________.
3、计算:=___;
4、如图,在半径为5的⊙O中,弦AB=6,OC⊥AB于点D,交⊙O于点C,则CD=_____.
5、计算:=___;
三、解答题(5小题,每小题10分,共计50分)
1、如图,中,,于D,点E在AD上,且.
(1)求证:≌;
(2)判断直线BE和AC的位置关系,并说明理由.
2、沙坪坝区某街道为积极响应“开展全民义务植树40周年”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共70棵,且甲种树木单价、乙种树木单价每棵分别为90元,80元,共用去资金6000元.
(1)求甲、乙两种树木各购买了多少棵?
(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了a%,且总费用不超过6500元,求a的最大整数值.
3、已知:如图,E,F是线段BC上两点,ABCD,BE=CF,∠A=∠D.求证:AF=DE.
4、一个角的补角比它的余角的3倍少,求这个角的度数.
5、在光明中学开展的读书月活动中,七一班数学兴趣小组调查了七年级部分学生平均每天读书的时间(单位:分钟),根据统计结果制成了下列不完整的频数直方图和扇形统计图.请结合图中信息回答下列问题:
(1)本次调查的学生人数为___________.
(2)补全频数直方图.
(3)根据以上调查,兴趣小组想制作倡议书发放给七年级平均每天读书的时间低于30分钟的学生,已知七年级一共有300名学生,请估计该兴趣小组需要制作多少份倡议书.并为读书的时间低于30分钟的学生同学提出一条合理建议.
-参考答案-
一、单选题
1、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
2、A
【分析】
由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.
【详解】
解:∵,,
,
∴x=1,y=-2,此时x-y=3;
x=-1,y=-2,此时x-y=1.
故选:A.
【点睛】
此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.
3、C
【分析】
先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.
【详解】
解:∵,
∴a-2=0,b+1=0,
∴a=2,b=-1,
∴=,
故选C.
【点睛】
本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.
4、B
【分析】
根据题意分别求得第一次操作,第二次操作所增加的数,可发现是定值5,从而求得第101次操作后所有数之和为2+7+9+2022×5=10128.
【详解】
解:∵第一次操作增加数字:-2,7,
第二次操作增加数字:5,2,-11,9,
∴第一次操作增加7-2=5,
第二次操作增加5+2-11+9=5,
即,每次操作加5,第2022次操作后所有数之和为2+7+9+2022×5=10128.
故选:B.
【点睛】
此题主要考查了数字变化类,关键是找出规律,要求要有一定的解题技巧,解题的关键是能找到所增加的数是定值5.
5、A
【分析】
先根据二次根式的性质化成最简二次根式,再看看被开方数是否相同即可.
【详解】
解:A、,即化成最简二次根式后被开方数相同(都是5),所以是同类二次根式,故本选项符合题意;
B、最简二次根式和的被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
C、,即化成最简二次根式后被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
D、,即化成最简二次根式后被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
故选:A.
【点睛】
本题考查了二次根式的性质与化简和同类二次根式的定义,能熟记同类二次根式的定义是解此题的关键.
6、A
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,据此可得结论.
【详解】
解:选项B、C、D均不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,
选项A能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,
故选:A.
【点睛】
本题主要考查了中心对称图形,掌握中心对称图形的定义是解题关键.
7、B
【分析】
观察图形发现∠α是正六边形的一个内角,直接求正六边形的内角即可.
【详解】
∠α=
故选:B.
【点睛】
本题考查正多边形的内角,解题的关键是观察图形发现∠α是正六边形的一个内角.
8、B
【分析】
设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.
【详解】
解:设,
∵,
∴,
∴.
∵,
∴,
∴.
∵OM平分,
∴,
∴,解得.
.
故选:B.
【点睛】
本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
9、C
【分析】
根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:①如图,开口向上,得,
,得,
抛物线与轴交于负半轴,即,
,
故①错误;
②如图,抛物线与轴有两个交点,则;
故②正确;
③由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,
故③正确;
④如图所示,当时,,
根的个数为与图象的交点个数,
有两个交点,即有两个根,
故④正确;
综上所述,正确的结论有3个.
故选:C.
【点睛】
主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
10、D
【分析】
根据有理数的定义:整数和分数统称为有理数,进行求解即可.
【详解】
解:0是整数,是有理数;
是无限不循环小数,不是有理数;
是分数,是有理数;
是分数,是有理数;
3.14是有限小数,是分数,是有理数,
故选D.
【点睛】
此题考查有理数的定义,熟记定义并运用解题是关键.
二、填空题
1、2
【分析】
,可知,代值求解即可.
【详解】
解:
,
故答案为:2.
【点睛】
本题考查了线段的和与差.解题的关键在于正确的表示各线段之间的数量关系.
2、12
【分析】
先求出BC=2,得到AC=AB+BC=8,根据,求出AD=4,再利用CD=AD+AC求出答案.
【详解】
解:∵,,
∴BC=2,
∴AC=AB+BC=8,
∵,
∴AD=4,
∴CD=AD+AC=4+8=12,
故答案为:12.
【点睛】
此题考查了几何图形中线段的和差计算,正确根据题意画出图形辅助解决问题是解题的关键.
3、
【分析】
先分母有理化,然后合并即可.
【详解】
解:原式=
=
=
=
故答案为:.
【点睛】
本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则和分母有理化是解决问题的关键.
4、
【分析】
连接OA,先利用垂径定理得出AD的长,再由勾股定理得出OD的长即可解答.
【详解】
解:连接OA,
∵AB=6,OC⊥AB于点D,
∴AD=AB=×6=3,
∵⊙O的半径为5,
∴,
∴CD=OC-OD=5-4=1.
故答案为:1.
【点睛】
本题考查的是垂径定理及勾股定理,解答此题的关键是作出辅助线构造出直角三角形,再利用勾股定理求解.
5、
【分析】
根据二次根式的乘法法则:(a≥0,b≥0)计算.
【详解】
解:原式==,
故答案为:.
【点睛】
本题考查了二次根式的乘除法,掌握二次根式的乘法法则,最后的化简是解题关键.
三、解答题
1、
(1)见详解;
(2)BE⊥AC;理由见详解.
【分析】
(1)先得到AD=BD,,然后利用HL即可证明≌;
(2)延长BE,交AC于点F,由(1)可知,然后得到,即可得到结论成立.
(1)
解:∵于D,
∴,
∵,
∴,
∴,
∵,
∴≌(HL);
(2)
解:BE⊥AC;
理由如下:
延长BE,交AC于点F,如图:
由(1)可知,≌,
∴,
∵,
∴,
∴BE⊥AC;
【点睛】
本题考查了全等三角形的判定和性质,余角的性质,等腰三角形的判定和性质,解题的关键是掌握所学的知识,正确的找出全等的条件.
2、
(1)甲种树木购买了40棵,乙种树木购买了30棵
(2)a的最大值为25
【分析】
(1)设甲种树木购买了x棵,乙种树木购买了y棵,根据总费用=单价×数量结合“购买了甲、乙两种树木共70棵,共用去资金6000元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总费用=单价×数量结合总费用不超过6500元,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论.
【小题1】
解:设甲种树木购买了x棵,乙种树木购买了y棵,
根据题意得:,
解得:,
答:甲种树木购买了40棵,乙种树木购买了30棵.
【小题2】
根据题意得:90×(1+a%)×40+80×(1-a%)×30≤6500,
解得:a≤25.
答:a的最大值为25.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
3、见解析
【分析】
欲证明AF=DE,只要证明△ABF≌△DCE即可;
【详解】
证明:∵BE=CF,
∴BF=CE,
∵ABCD,
∴∠B=∠C,
在△ABF和△DCE,,
∴△ABF≌△DCE,
∴AF=DE.
【点睛】
本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.
4、这个角的度数是
【分析】
设这个角为,根据题意列方程求解即可.
【详解】
解:设这个角为,则余角为,补角为,
由题意得:,
解得:.
答:这个角的度数是.
【点睛】
本题考查了一元一次方程的应用,以及余角和补角的意义,如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角.
5、
(1)60
(2)见解析
(3)30,开卷有益,要养成阅读的好习惯(答案不唯一)
【分析】
(1)平均每天读书的时间10—30分钟的人数除以所占的百分比,即可求解;
(2)用总人数乘以平均每天读书的时间30—50分钟所占的百分比,即可求解;
(3)用300乘以平均每天读书的时间10—30分钟所占的百分比,即可求解.
(1)
解:本次调查的学生人数为名;
(2)
解:平均每天读书的时间30—50分钟的人数为名,
补全频数直方图如下图:
(3)
解:份.
建议:开卷有益,要养成阅读的好习惯
【点睛】
本题主要考查了条形统计图和扇形统计图,能准确从统计图信息是解题的关键.
【难点解析】湖南省武冈市中考数学模拟真题 (B)卷(含答案及解析): 这是一份【难点解析】湖南省武冈市中考数学模拟真题 (B)卷(含答案及解析),共23页。试卷主要包含了不等式的最小整数解是,如图个三角形.等内容,欢迎下载使用。
【真题汇总卷】2022年北京市朝阳区中考数学模拟真题测评 A卷(含答案解析): 这是一份【真题汇总卷】2022年北京市朝阳区中考数学模拟真题测评 A卷(含答案解析),共27页。试卷主要包含了二次函数y=,观察下列图形等内容,欢迎下载使用。
【真题汇总卷】2022年北京市朝阳区中考数学模拟真题测评 A卷(含答案及解析): 这是一份【真题汇总卷】2022年北京市朝阳区中考数学模拟真题测评 A卷(含答案及解析),共25页。试卷主要包含了有依次排列的3个数,下列说法正确的是,下列计算错误的是,下列命题中,是真命题的是等内容,欢迎下载使用。