[中考专题]2022年河北省平顶山市中考数学二模试题(含答案详解)
展开2022年河北省平顶山市中考数学二模试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列关于x的方程中,一定是一元二次方程的是( )
A. B.
C. D.
2、一把直尺与一块直角三角板按下图方式摆放,若,则( )
A.52° B.53° C.54° D.63°
3、下列图形绕直线旋转一周,可以得到圆柱的是( )
A. B. C. D.
4、如图,是的外接圆,,则的度数是( )
A. B. C. D.
5、如图,小玲将一个正方形纸片剪去一个宽为的长条后,再从剩下的长方形纸片上剪去一个宽为的长条,如果两次剪下的长条面积正好相等,那么原正方形的边长为( )cm.
A. B. C. D.
6、已知的两个根为、,则的值为( )
A.-2 B.2 C.-5 D.5
7、如图,在△ABC和△DEF中,AC∥DF,AC=DF,点A、D、B、E在一条直线上,下列条件不能判定△ABC≌△DEF的是( ).
A. B.
C. D.
8、若关于的方程有两个实数根,则的取值范围是( )
A. B. C. D.
9、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )
A.50° B.65° C.75° D.80°
10、根据以下程序,当输入时,输出结果为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图点O在直线上,与互为余角,则的大小为________.
2、已知圆弧所在圆的半径为36cm.所对的圆心角为60°,则该弧的长度为______cm.
3、计算: _______
4、已知抛物线y=(x﹣1)2有点A(0,y1)和B(3,y2),则y1___y2.(用“>”,“<”,“=”填写)
5、如图,是的中线,,,把沿翻折,使点落在的位置,则为___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,二次函数y=a(x﹣1)2﹣4a(a≠0)的图像与x轴交于A,B两点,与y轴交于点C(0,﹣).
(1)求二次函数的表达式;
(2)连接AC,BC,判定△ABC的形状,并说明理由.
2、作图题:(尺规作图,保留作图痕迹)已知:线段a、b,求作:线段,使.
3、(数学阅读)
图1是由若干个小圆圈推成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共推了n层.
将图1倒置后与原图1排成图2的形状,这样图2中每一行的圆圈数都是.
我们可以利用“倒序相加法”算出图1中所有圆圈的个数为:.
(问题解决)
(1)按照图1的规则摆放到第12层时,求共用了多少个圆圈;
(2)按照图1的规则摆放到第19层,每个圆圈都按图3的方式填上一串连续的正整数:1,2,3,4,……,则第19层从左边数第二个圆圈中的数字是______.
4、如图,在中,,D是延长线上的一点,E是上的一点.连接.如果.求证:.
5、已知抛物线y=﹣x2+x.
(1)直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;
(2)已知该抛物线经过A(3n+4,y1),B(2n﹣1,y2)两点.
①若n<﹣5,判断y1与y2的大小关系并说明理由;
②若A,B两点在抛物线的对称轴两侧,且y1>y2,直接写出n的取值范围.
-参考答案-
一、单选题
1、C
【分析】
根据一元二次方程的定义判断.
【详解】
A.含有,不是一元二次方程,不合题意;
B.整理得,-x+1=0,不是一元二次方程,不合题意;
C.x2=0是一元二次方程,故此选项符合题意;
D.当a=0时,ax2+bx+c=0,不是一元二次方程,不合题意.
故选C.
【点睛】
本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).
2、B
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,,
∴,
∴,
故选B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.
3、A
【分析】
根据面动成体,直角三角形绕直角边旋转是圆锥,矩形绕边旋转是圆柱,直角梯形绕直角边旋转是圆台,半圆案绕直径旋转是球,可得答案.
【详解】
解:A.旋转后可得圆柱,故符合题意;
B. 旋转后可得球,故不符合题意;
C. 旋转后可得圆锥,故不符合题意;
D. 旋转后可得圆台,故不符合题意;
故选:A.
【点睛】
本题考查了面动成体的知识,熟记各种图形旋转得出的立体图形是解题关键.
4、C
【分析】
在等腰三角形OCB中,求得两个底角∠OBC、∠OCB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.
【详解】
解:在中,,
;
,,
;
又,
,
故选:.
【点睛】
本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.
5、B
【分析】
设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,根据两次剪下的长条面积正好相等列方程求解.
【详解】
解:设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,
依题意得:2x=3(x-2),
解得x=6
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系,正值列出一元一次方程是解题的关键.
6、B
【分析】
直接运用一元二次方程根与系数的关系求解即可.
【详解】
解:∵的两个根为、,
∴
故选:B
【点睛】
本题主要考查了一元二次方程根与系数的关系,若、为一元二次方程的两个实数根,则有,.
7、D
【分析】
根据各个选项中的条件和全等三角形的判定可以解答本题.
【详解】
解:∵AC∥DF,
∴∠A=∠EDF,
∵AC=DF,∠A=∠EDF,添加∠C=∠F,根据ASA可以证明△ABC≌△DEF,故选项A不符合题意;
∵AC=DF,∠A=∠EDF,添加∠ABC=∠DEF,根据AAS可以证明△ABC≌△DEF,故选项B不符合题意;
∵AC=DF,∠A=∠EDF,添加AB=DE,根据SAS可以证明△ABC≌△DEF,故选项C不符合题意;
∵AC=DF,∠A=∠EDF,添加BC=EF,不可以证明△ABC≌△DEF,故选项D符合题意;
故选:D.
【点睛】
本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.
8、B
【分析】
令该一元二次方程的判根公式,计算求解不等式即可.
【详解】
解:∵
∴
∴
解得
故选B.
【点睛】
本题考查了一元二次方程的根与解一元一次不等式.解题的关键在于灵活运用判根公式.
9、B
【分析】
根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.
【详解】
解:如图,
根据题意得:BG∥AF,
∴∠FAE=∠BED=50°,
∵AG为折痕,
∴ .
故选:B
【点睛】
本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.
10、C
【分析】
根据流程图所示顺序,逐框分析代入求值即可.
【详解】
解:当输入时,
代入
代入,则输出
故选C
【点睛】
本题考查了程序流程图与代数式求值,正确代入求值是解题的关键.
二、填空题
1、90°
【分析】
利用互余的定义,平角的定义,角的差计算即可.
【详解】
∵与互为余角,
∴∠AOC+∠BOD=90°,
∴∠COD=180°-90°=90°,
故答案为:90°.
【点睛】
本题考查了互余即两个角的和是90°,角的和差,熟练记住互余的定义,灵活运用角的和差是解题的关键.
2、
【分析】
根据弧长公式直接计算即可.
【详解】
∵圆的半径为36cm.所对的圆心角为60°,
∴弧的长度为:=12π,
故答案为:12π.
【点睛】
本题考查了弧长的计算,熟练掌握弧长公式及其使用条件是解题的关键.
3、##
【分析】
根据二次根式的加减乘除运算法则逐个运算即可.
【详解】
解:原式,
故答案为:.
【点睛】
本题考查了二次根式的四则运算,属于基础题,计算过程中细心即可.
4、<
【分析】
分别把A、B点的横坐标代入抛物线解析式求解即可.
【详解】
解:x=0时,y1=(0﹣1)2=1,
x=3时,y3=(3﹣1)2=4,
∴y1<y2.
故答案为:<.
【点睛】
本题考查了二次函数图象上点的坐标特征,求出相应的函数值是解题的关键.
5、
【分析】
根据翻折知:∠ADE=∠ADC=45°,ED=EC,得到∠BDE=90°,利用勾股定理计算即可.
【详解】
解:是的中线,
,
翻折,
,,
,,
在中,由勾股定理得:,
故答案为:.
【点睛】
本题考查的是翻折变换以及勾股定理,熟记翻折前后图形的对应角相等、对应边相等是解题的关键.
三、解答题
1、
(1);
(2)直角三角形,理由见解析.
【分析】
(1)将点C的坐标代入函数解析式,即可求出a的值,即得出二次函数表达式;
(2)令,求出x的值,即得出A、B两点的坐标.再根据勾股定理,求出三边长.最后根据勾股定理逆定理即可判断的形状.
(1)
解:将点C代入函数解析式得:,
解得:,
故该二次函数表达式为:.
(2)
解:令,得:,
解得:,.
∴A点坐标为(-1,0),B点坐标为(3,0).
∴OA=1,OC=,,
∴,
.
∵,即,
∴的形状为直角三角形.
【点睛】
本题考查利用待定系数法求函数解析式,二次函数图象与坐标轴的交点坐标,勾股定理逆定理.根据点C的坐标求出函数解析式是解答本题的关键.
2、线段AB为所作,图形见详解.
【分析】
先作射线AN,再截取DA=a,DC=CB=b,则线段AB满足条件.
【详解】
解:如图, 作射线AN,在射线AN上截取AD=a
在线段DA上顺次截取DC=CB=b,
∴AB=AD-BC-CD=a-b-b=a-2b
线段AB为所作.
【点睛】
本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
3、
(1)78个圆圈
(2)173
【分析】
(1)将代入公式求解即可得;
(2)先计算当时的值,然后根据题意,第19层从左边数第二个圆圈中的数字即可得出.
(1)
解:图1中所有圆圈的个数为:,
当时,
,
答:摆放到第12层时,求共用了78个圆圈;
(2)
先计算当时,
,
第19层从左边数第二个圆圈中的数字为:,
故答案为:173.
【点睛】
题目主要考查有理数的加法及找规律求代数式的值,理解题意,运用代数式求值是解题关键.
4、见解析
【分析】
由垂直可得,根据相似三角形的判定定理直接证明即可.
【详解】
证明:∵,
∴,
在和中,
∵,
∴.
【点睛】
题目主要考查相似三角形的判定定理,熟练掌握相似三角形的判定是解题关键.
5、
(1)直线x=1,(0,0)
(2)①y1<y2,理由见解析;②﹣1<n<﹣
【分析】
(1)由对称轴公式即可求得抛物线的对称轴,令x=0,求得函数值,即可求得抛物线与y轴的交点坐标;
(2)①由n<﹣5,可得点A,点B在对称轴直线x=1的左侧,由二次函数的性质可求解;
(3)分两种情况讨论,列出不等式组可求解.
(1)
∵y=﹣x2+x,
∴对称轴为直线x=﹣=1,
令x=0,则y=0,
∴抛物线与y轴的交点坐标为(0,0);
(2)
xA﹣xB=(3n+4)﹣(2n﹣1)=n+5,xA﹣1=(3n+4)﹣1=3n+3=3(n+1),xB﹣1=(2n﹣1)﹣1=2n﹣2=2(n﹣1).
①当n<﹣5时,xA﹣1<0,xB﹣1<0,xA﹣xB<0.
∴A,B两点都在抛物线的对称轴x=1的左侧,且xA<xB,
∵抛物线y=﹣x2+x开口向下,
∴在抛物线的对称轴x=1的左侧,y随x的增大而增大.
∴y1<y2;
②若点A在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,
由题意可得,
∴不等式组无解,
若点B在对称轴直线x=1的左侧,点A在对称轴直线x=1的右侧时,
由题意可得:,
∴﹣1<n<﹣,
综上所述:﹣1<n<﹣.
【点睛】
本题考查了抛物线与y轴的交点,二次函数的性质,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键.
【真题汇编】河北省中考数学三模试题(含答案及详解): 这是一份【真题汇编】河北省中考数学三模试题(含答案及详解),共27页。试卷主要包含了下列计算中,正确的是,单项式的次数是,抛物线的顶点为等内容,欢迎下载使用。
【真题汇编】贵州省中考数学二模试题(含答案详解): 这是一份【真题汇编】贵州省中考数学二模试题(含答案详解),共29页。试卷主要包含了如图,A,生活中常见的探照灯等内容,欢迎下载使用。
【历年真题】2022年河北省新乐市中考数学二模试题(含答案详解): 这是一份【历年真题】2022年河北省新乐市中考数学二模试题(含答案详解),共30页。试卷主要包含了若,则下列不等式正确的是,下列各数中,是无理数的是,计算12a2b4•÷的结果等于,不等式+1<的负整数解有等内容,欢迎下载使用。