模拟真题:2022年云南省昆明市中考数学模拟真题 (B)卷(含答案详解)
展开· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2022年云南省昆明市中考数学模拟真题 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列方程中,关于x的一元二次方程的是( )
A.x2-1=2x B.x3+2x2=0 C. D.x2-y+1=0
2、下列各组数据中,能作为直角三角形的三边长的是( )
A.,, B.4,9,11 C.6,15,17 D.7,24,25
3、二次函数y=ax2+bx+c(a≠0)的图象如图所示,与x轴交于点(−1,0)和(x,0),且1
A.4 B.3 C.2 D.1
4、0.1234567891011……是一个无理数,其小数部分是由1开始依次写下递增的正整数得到的,则该无理数小数点右边的第2022位数字是( )
A.0 B.1 C.2 D.3
5、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )
A. B.四边形EFGH是菱形
C. D.
6、如图,点A的坐标为,点B是x轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A. B.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C. D.
7、已知关于x,y的方程组和的解相同,则的值为( )
A.1 B.﹣1 C.0 D.2021
8、如图,中,,,,,平分,如果点,分别为,上的动点,那么的最小值是( )
A.6 B.8 C.10 D.4.8
9、育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据:
抽查小麦粒数
100
300
800
1000
2000
3000
发芽粒数
96
287
770
958
1923
a
则a的值最有可能是( )
A.2700 B.2780 C.2880 D.2940
10、若,,且a,b同号,则的值为( )
A.4 B.-4 C.2或-2 D.4或-4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若,则的值是______.
2、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.
3、现有一列数,,…,,其中,,,且满足任意相邻三个数的和为相等的常数,则的值为______.
4、如图,B、C、D在同一直线上,,,,则的面积为_______.
5、已知点P(3m﹣6,m+1),A(﹣1,2),直线PA与x轴平行,则点P的坐标为_____.
三、解答题(5小题,每小题10分,共计50分)
1、A市出租车收费标准如下:
行程(千米)
3千米以内
满3千米但不超过8千米的部分
8千米以上的部分
收费标准· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(元)
10元
2.4元/千米
3元/千米
(1)若甲、乙两地相距6千米,乘出租车从甲地到乙地需要付款多少元?
(2)某人从火车站乘出租车到旅馆,下车时计费表显示19.6元,请你帮忙算一算从火车站到旅馆的距离有多远?
(3)小明乘飞机来到A市,小刚从旅馆乘出租车到机场去接小明,到达机场时计费表显示73元,接完小明,立即沿原路返回旅馆(接人时间忽略不计),请帮小刚算一下乘原车返回和换乘另外的出租车,哪种更便宜?
2、如图,已知,,作图及步骤如下:
(1)以点为圆心,为半径画弧;
(2)以点为圆心,为半径画弧,两弧交于点;
(3)连接,交延长线于点.
(4)过点作于点,于点.
请根据以下推理过程,填写依据:
,
点、点在的垂直平分线上(________)
直线是的垂直平分线(________)
,
(等腰三角形________、________、________相互重合)
又,
(________)
在中,
(________)
3、先化简再求值:其中,
4、(问题)老师上完《7.3特殊角的三角函数》一课后,提出了一个问题,让同学们尝试去探究75°的正弦值.小明和小华经过思考与讨论,作了如下探索:
(方案一)小明构造了图1,在△ABC中,AC=2,∠B=30°, ∠C=45°.
第一步:延长BA,过点C作CD⊥BA,垂足为D,求出DC的长;
第二步:在Rt△ADC中,计算sin75°.
(方案二)小华构造了图2,边长为a的正方形ABCD的顶点A在直线EF上,且∠DAF=30°.
第一步:连接AC,过点C作CGEF,垂足为G,用含a的代数式表示AC和CG的长:
第二步:在Rt△AGC中,计算sin75°
请分别按照小明和小华的思路,完成解答过程,
5、在正方形网格中,每个小正方形的边长为1,△ABC在平面直角坐标系中的位置如图所示.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)画出△ABC沿x轴翻折后的△A1B1C1;
(2)以点M为位似中心,在网格中作出△A1B1C1的位似图形△A2B2C2,使其位似比为2:1;
(3)点A2的坐标______;△ABC与△A2B2C2的周长比是______.
-参考答案-
一、单选题
1、A
【分析】
只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.
【详解】
解:A、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;
B、未知数最高次数是3,不是关于x的一元二次方程,不符合题意;
C、为分式方程,不符合题意;
D、含有两个未知数,不是一元二次方程,不符合题意
故选:A.
【点睛】
本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.
2、D
【分析】
由题意直接依据勾股定理的逆定理逐项进行判断即可.
【详解】
解:A.∵,
∴,,为边不能组成直角三角形,故本选项不符合题意;
B.∵42+92≠112,
∴以4,9,11为边不能组成直角三角形,故本选项不符合题意;
C.∵62+152≠172,
∴以6,15,17为边不能组成直角三角形,故本选项不符合题意;
D.∵72+242=252,
∴以7,24,25为边能组成直角三角形,故本选项符合题意;
故选:D.
【点睛】
本题考查勾股定理的逆定理,能熟记勾股定理的逆定理是解答此题的关键,注意掌握如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、B
【分析】
由开口方向、对称轴的位置可判断结论①;由对称轴的位置可判断结论②;由x=-1函数值为0以及对称轴的位置可判断结论③;由增减性可判断结论④.
【详解】
解:由图象可知,a>0,b<0,∴ab<0,①正确;
因与x轴交于点(−1,0)和(x,0),且1
由图象可知x=−1,y=a−b+c=0,又2a>−b,2a+a+c>−b+a+c,
∴3a+c>0,③正确;
由增减性可知m<−1,am2+bm+c>0,
当x=1时,a+b+c<0,即a+b
故选:B.
【点睛】
本题考查了二次函数图象与系数之间的关系,熟练掌握二次函数的开口方向,对称轴,函数增减性并会综合运用是解决本题的关键.
4、A
【分析】
一位数字9个,两位数字90个,三位数字900个,由此算出2022处于三位数字的第几个数字求得答案即可.
【详解】
∵共有9个1位数,90个2位数,900个3位数,
∴2022-9-90×2=1833,
∴1833÷3=611,
∵此611是继99后的第611个数,
∴此数是710,第三位是0,
故从左往右数第2022位上的数字为0,
故选:A.
【点睛】
此题主要考查了规律型:数字的变化类,根据已知得出变化规律是解题关键.
5、C
【分析】
由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.
【详解】
解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.
∵AB和AE都是⊙O的切线,点G、H分别是切点,
∴AG=AH,∠GAF=∠HAF,
∴∠GAF=∠HAF=∠DAE=30°,
∴∠BAE=2∠DAE,故A正确,不符合题意;
延长EF与AB交于点N,如图:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵OF⊥EF,OF是⊙O的半径,
∴EF是⊙O的切线,
∴HE=EF,NF=NG,
∴△ANE是等边三角形,
∴FG//HE,FG=HE,∠AEF=60°,
∴四边形EFGH是平行四边形,∠FEC=60°,
又∵HE=EF,
∴四边形EFGH是菱形,故B正确,不符合题意;
∵AG=AH,∠GAF=∠HAF,
∴GH⊥AO,故D正确,不符合题意;
在Rt△EFC中,∠C=90°,∠FEC=60°,
∴∠EFC=30°,
∴EF=2CE,
∴DE=2CE.
∵在Rt△ADE中,∠AED=60°,
∴AD=DE,
∴AD=2CE,故C错误,符合题意.
故选C.
【点睛】
本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.
6、A
【分析】
根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.
【详解】
解:作AD∥x轴,作CD⊥AD于点D,如图所示,
由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,
∵AD∥x轴,
∴∠DAO+∠AOB=180°,
∴∠DAO=90°,
∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
∴∠OAB=∠DAC,
在△OAB和△DAC中
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
∴△OAB≌△DAC(AAS),
∴OB=CD,
∴CD=x,
∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,
∴y=x+1(x>0).
故选:A.
【点睛】
本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.
7、B
【分析】
联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求.
【详解】
解:联立得:,
解得:,
则有,
解得:,
∴,
故选:B.
【点睛】
此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值.
8、D
【分析】
如图所示:过点作于点,交于点,过点作于点,则,此时最小,再利用等面积法求解最小值即可.
【详解】
解:如图所示:
过点作于点,交于点,
过点作于点,
平分,
,
.
在中,,,,,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
.
即的最小值是4.8,
故选:D.
【点睛】
本题考查的是垂线段最短,角平分线的性质定理的应用,等面积法的应用,确定取最小值时点的位置是解本题的关键.
9、C
【分析】
计算每组小麦的发芽率,根据结果计算.
【详解】
解:∵
∴=2880,
故选:C.
【点睛】
此题考查了数据的频率估计概率,正确掌握频率公式计算频率是解题的关键.
10、D
【分析】
根据绝对值的定义求出a,b的值,根据a,b同号,分两种情况分别计算即可.
【详解】
解:∵|a|=3,|b|=1,
∴a=±3,b=±1,
∵a,b同号,
∴当a=3,b=1时,a+b=4;
当a=-3,b=-1时,a+b=-4;
故选:D.
【点睛】
本题考查了绝对值,有理数的加法,考查分类讨论的数学思想,知道a,b同号分两种:a,b都是正数或都是负数是解题的关键.
二、填空题
1、
【分析】
根据绝对值、平方的非负性,可得 ,再代入即可求解.
【详解】
解:∵,
∴ ,
解得: ,
∴.
故答案为:
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题主要考查了绝对值、平方的非负性,乘方运算,熟练掌握绝对值、平方的非负性,乘方运算法则是解题的关键.
2、
【分析】
如图,取的中点,连接,,,证明,进而证明在上运动, 且垂直平分,根据,求得最值,根据正方形的性质和勾股定理求得的长即可求得的最小值.
【详解】
解:如图,取的中点,连接,,,
将线段MN绕点M顺时针旋转60°得到线段MQ,
,
是等边三角形,
,
是的中点,是的中点
是等边三角形
,
即
在和中,
又
是的中点
点在上
是的中点,是等边三角,
又
垂直平分
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
即的最小值为
四边形是正方形,且
的最小值为
故答案为:
【点睛】
本题考查了正方形的性质等边三角形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,垂直平分线的性质与判定,根据以上知识转化线段是解题的关键.
3、-2690
【分析】
先根据任意相邻三个数的和为相等的常数可推出x1=x4=x7=…=x2020=x7=5,x2=x5=x8=…=x2021=-3,x3=x6=x9=…=x333=x2019=-6,由此可求x1+x2+x3+…+x2021的值.
【详解】
解:∵x1+x2+x3=x2+x3+x4,
∴x1=x4,
同理可得:
x1=x4=x7=…=x2020=x7=5,
x2=x5=x8=…=x2021=-3,
x3=x6=x9=…=x333=x2019=-6,
∴x1+x2+x3=-4,
∵2021=673×3+2,
∴x1+x2+x3+…+x2021
=(-4)×673+(5-3)
=-2692+2
=-2690.
故答案为:-2690.
【点睛】
本题考查数字的变化规律,通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.
4、20
【分析】
根据题意由“SAS”可证△ABC≌△CDE,得AC=CE,∠ACB=∠CED,再证∠ACE=90°,然后由勾股定理可求AC的长,进而利用三角形面积公式即可求解.
【详解】
解:在△ABC和△CDE中,
,
∴△ABC≌△CDE(SAS),
∴AC=CE,∠ACB=∠CED,
∵∠CED+∠ECD=90°,
∴∠ACB+∠ECD=90°,
∴∠ACE=90°,
∵∠B=90°,AB=2,BC=6,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴CE=,
∴S△ACE=AC×CE=××=20,
故答案为:20.
【点睛】
本题考查全等三角形的判定和性质,勾股定理,等腰直角三角形的性质等知识,证明△ABC≌△CDE是解题的关键.
5、(﹣3,2)
【分析】
由题意知m+1=2,得m的值;将m代入求点P的坐标即可.
【详解】
解:∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上
∴m+1=2
解得m=1
∴3m﹣6=3×1﹣6=﹣3
∴点P的坐标为(﹣3,2)
故答案为:(﹣3,2).
【点睛】
本题考查了直角坐标系中与x轴平行的直线上点坐标的关系.解题的关键在于明确与x轴平行的直线上点坐标的纵坐标相等.
三、解答题
1、
(1)17.2元
(2)7千米
(3)换乘另外出租车更便宜
【分析】
(1)根据图表和甲、乙两地相距6千米,列出算式,再进行计算即可;
(2)根据(1)得出的费用,得出火车站到旅馆的距离超过3千米,但不超过8千米,再根据图表列出方程,求出x的值即可;
(3)根据(1)得出的费用,得出出租车行驶的路程超过8千米,设出租车行驶的路程为x千米,根据图表中的数量,列出方程,求出x的值,从而得出乘原车返回需要的花费,再与换乘另一辆出租车需要的花费进行比较,即可得出答案.
(1)
10+2.4×(6-3)=17.2(元),
答:乘出租车从甲地到乙地需要付款17.2元;
(2)
设火车站到旅馆的距离为x千米.
10+2.4×5=22,
∵10<19.6<22,∴3≤x≤8,
10+2.4(x-3)=19.2,
∴x=7,符合题意.
答:从火车站到旅馆的距离有7千米;
(3)
)设旅馆到机场的距离为x千米,
∵73>22,
∴x>8.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
10+2.4(8-3)+3(x-8)=73,
∴x=25.
所以乘原车返回的费用为:10+2.4×(8-3)+3×(25×2-8)=148(元);
换乘另外车辆的费用为:73×2=146(元)所以换乘另外出租车更便宜.
【点睛】
此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
2、到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;顶角的平分线;底边上的高;底边上的中线;角平分线上的点到角的两边的距离相等;在直角三角形中,所对的直角边等于斜边的一半
【分析】
据题中的几何语言画出对应的几何图形,然后利用线段的垂直平分线的性质、角平分线的性质和含30度的直角三角形三边的关系填写依据.
【详解】
解:如图,
,
点、点在的垂直平分线上(到线段两端点的距离相等的点在这条线段的垂直平分线上),
直线是的垂直平分线(两点确定一直线),
,,
(等腰三角形顶角的平分线、底边上的高、底边上的中线相互重合),
又,
(角平分线上的点到角的两边的距离相等),
在中,
(在直角三角形中,所对的直角边等于斜边的一半).
故答案为:到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;顶角的平分线、底边上的高、底边上的中线;角平分线上的点到角的两边的距离相等;在直角三角形中,所对的直角边等于斜边的一半.
【点睛】
本题考查了作图-基本作图:熟练掌握5种基本作图是解决此类问题的关键.也考查了角平分线的性质和线段的垂直平分线的性质.
3、,
【分析】
先根据去括号和合并同类项法则化简,再把,代入计算即可.
【详解】
解:,
=
当时,原式=.
【点睛】
本题考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则及有理数的混合运算.
4、答案见解析
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
[方案一]延长BA,过点C作CD⊥BA,垂足为D,过A作AM⊥BC于M,在△ACM中,AC=2,∠ACB=45°,由三角函数得到,在△ABM中,求出AB、BM,得到BC,根据面积相等求出CD,由此求出答案;[方案二]连接,过点C作,垂足为G,延长,交于点H.先求出AC,由,,求出DH,得到CH的长,根据,求出CG,即可利用公式求出sin75°的值.
【详解】
[方案一]
解:延长BA,过点C作CD⊥BA,垂足为D,过A作AM⊥BC于M,
∵∠B=30°,∠ACB=45°,
∴
在△ACM中,AC=2,∠ACB=45°.
∴.
在△ABM中,∠B=30°,,,
∴.
∵
∴,
∴;
[方案二]
解:连接,过点C作,垂足为G,延长,交于点H.
∵正方形的边长为a,
∴,.
∴,.
∵,,
∴.
∴.
又∵,
∴.
∵中,,
∴.
【点睛】
此题考查了解直角三角形,正方形的性质,等腰三角形的性质,直角三角形30度角的性质,利用面· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
积法求三角形的高线,各特殊角度的三角函数值,正确掌握各知识点并综合应用是解题的关键.
5、
(1)见解析
(2)见解析
(3),
【分析】
(1)利用网格特点和旋转的性质画出A、B的对应点A1、B1即可;
(2)延长M A1到A2使MA2=2MA1,延长MB1到B2使MB2=2MB1,延长MC1到C2使MC2=2MC1,则可得到△A2B2C2,
(3)根据(2)可写出点A2的坐标;然后根据位似的性质可得△ABC与△A2B2C2的周长比
(1)
如图,△A1B1C1即为所作;
(2)
如图,△A2B2C2即为所作;
(3)
由(2)得,点的坐标,
由作图得,
∵与周长比为1:2
∴△ABC与△A2B2C2的周长比是1:2
故答案为:,1:2
【点睛】
本题考查了作图-位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.也考查了轴对称变换.
模拟真题湖南省长沙市中考数学模拟真题 (B)卷(含答案详解): 这是一份模拟真题湖南省长沙市中考数学模拟真题 (B)卷(含答案详解),共26页。试卷主要包含了下列图标中,轴对称图形的是,下列运算正确的是,下列各式中,不是代数式的是等内容,欢迎下载使用。
【真题汇总卷】湖南省衡阳市中考数学模拟真题 (B)卷(含答案及详解): 这是一份【真题汇总卷】湖南省衡阳市中考数学模拟真题 (B)卷(含答案及详解),共28页。试卷主要包含了下列语句中,不正确的是,下列运算正确的是等内容,欢迎下载使用。
【历年真题】中考数学模拟专项测试 B卷(含答案及详解): 这是一份【历年真题】中考数学模拟专项测试 B卷(含答案及详解),共20页。试卷主要包含了不等式+1<的负整数解有,下列计算,下列变形中,正确的是等内容,欢迎下载使用。