[中考专题]最新中考数学模拟真题 (B)卷(含答案详解)
展开最新中考数学模拟真题 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知关于的分式方程无解,则的值为( )
A.0 B.0或-8 C.-8 D.0或-8或-4
2、在中,,,则( )
A. B. C. D.
3、在2,1,0,-1这四个数中,比0小的数是( )
A.2 B.0 C.1 D.-1
4、若,,且a,b同号,则的值为( )
A.4 B.-4 C.2或-2 D.4或-4
5、对于反比例函数,下列结论错误的是( )
A.函数图象分布在第一、三象限
B.函数图象经过点(﹣3,﹣2)
C.函数图象在每一象限内,y的值随x值的增大而减小
D.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2
6、在数-12,π,-3.4,0,+3,中,属于非负整数的个数是( )
A.4 B.3 C.2 D.1
7、下列各数中,是不等式的解的是( )
A.﹣7 B.﹣1 C.0 D.9
8、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )
A.21 B.25 C.28 D.29
9、下列方程中,关于x的一元二次方程的是( )
A.x2-1=2x B.x3+2x2=0 C. D.x2-y+1=0
10、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,点A坐标为,点B在x轴上,若是直角三角形,则OB的长为______.
2、若a和b互为相反数,c和d互为倒数,则的值是________________.
3、按下面的程序计算,若开始输入的值为正整数,
规定:程序运行到“判断结果是否大于10”为一次运算,当时,输出结果____.若经过2次运算就停止,则可以取的所有值是____.
4、如图,∠AOB=62°,OC平分∠AOB,∠COD=90°,则∠AOD=_____度.
5、如图,已知:的平分线与的垂直平分线相交于点,,,垂足分别为、,,,则________.
三、解答题(5小题,每小题10分,共计50分)
1、由13个完全相同的小正方体搭成的物体如图所示.
(1)请在下面的方格图中分别画出该物体的左视图和俯视图;
(2)在保持物体左视图和俯视图不变的情况下,图中的小正方体最多可以拿走 个.
2、如图,在△ABC中,已知AD平分∠BAC,E是边AB上的一点,AE=AC,F是边AC上的一点,联结DE、CE、FE,当EC平分∠DEF时,猜测EF、BC的位置关系,并说明理由.(完成以下说理过程)
解:EF、BC的位置关系是______.
说理如下:
因为AD是∠BAC的角平分线(已知)
所以∠1=∠2.
在△AED和△ACD中,,
所以△AED≌△ACD(SAS).
得__________(全等三角形的对应边相等).
3、用适当方法解下列一元二次方程:
(1)x2﹣6x=1;
(2)x2﹣4=3(x﹣2).
4、如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点D是边AC上的动点,以CD为边在△ABC外作正方形CDEF,分别联结AE、BE,BE与AC交于点G
(1)当AE⊥BE时,求正方形CDEF的面积;
(2)延长ED交AB于点H,如果△BEH和△ABG相似,求sin∠ABE的值;
(3)当AG=AE时,求CD的长.
5、对于平面直角坐标系xOy中的图形M,N,给出如下定义:若图形M和图形N有且只有一个公共点P,则称点P是图形M和图形N的“关联点”.
已知点,,,.
(1)直线l经过点A,的半径为2,在点A,C,D中,直线l和的“关联点”是______;
(2)G为线段OA中点,Q为线段DG上一点(不与点D,G重合),若和有“关联点”,求半径r的取值范围;
(3)的圆心为点,半径为t,直线m过点A且不与x轴重合.若和直线m的“关联点”在直线上,请直接写出b的取值范围.
-参考答案-
一、单选题
1、D
【分析】
把分式方程转化为整式方程,分分母为零无解,分母为零时,对应的字母值求解.
【详解】
∵
∴,
∴,
∴,
∴当m+4=0时,方程无解,
故m= -4;
∴当m+4≠0,x=2时,方程无解,
∴
故m=0;
∴当m+4≠0,x= -2时,方程无解,
∴
故m=-8;
∴m的值为0或-8或-4,
故选D.
【点睛】
本题考查了分式方程的无解,正确理解无解的条件和意义是解题的关键.
2、B
【分析】
作出图形,设BC=3k,AB=5k,利用勾股定理列式求出AC,再根据锐角的余切即可得解.
【详解】
解:如图,
,
∴
∴设BC=3k,AB=5k,
由勾股定理得,
∴.
故选:B.
【点睛】
本题考查了求三角函数值,利用“设k法”表示出三角形的三边求解更加简便.
3、D
【分析】
根据正数大于零,零大于负数,即可求解.
【详解】
解:在2,1,0,-1这四个数中,比0小的数是-1
故选:D
【点睛】
本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.
4、D
【分析】
根据绝对值的定义求出a,b的值,根据a,b同号,分两种情况分别计算即可.
【详解】
解:∵|a|=3,|b|=1,
∴a=±3,b=±1,
∵a,b同号,
∴当a=3,b=1时,a+b=4;
当a=-3,b=-1时,a+b=-4;
故选:D.
【点睛】
本题考查了绝对值,有理数的加法,考查分类讨论的数学思想,知道a,b同号分两种:a,b都是正数或都是负数是解题的关键.
5、D
【分析】
根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析得出即可.
【详解】
解:A、∵k=6>0,∴图象在第一、三象限,故A选项正确;
B、∵反比例函数,∴xy=6,故图象经过点(-3,-2),故B选项正确;
C、∵k>0,∴x>0时,y随x的增大而减小,故C选项正确;
D、∵不能确定x1和x2大于或小于0
∴不能确定y1、y2的大小,故错误;
故选:D.
【点睛】
本题考查了反比例函数(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
6、C
【分析】
非负整数即指0或正整数,据此进行分析即可.
【详解】
解:在数-12,π,-3.4,0,+3,中,属于非负整数的数是:0,+3,共2个,
故选:C.
【点睛】
本题主要考查了有理数.明确非负整数指的是正整数和0是解答本题的关键.
7、D
【分析】
移项、合并同类项,得到不等式的解集,再选取合适的x的值即可.
【详解】
解:移项得:,
∴9为不等式的解,
故选D.
【点睛】
本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.
8、D
【分析】
根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.
【详解】
解:∵第1个图形中圆圈数量5=1+4×1,
第2个图形中圆圈数量9=1+4×2,
第3个图形中圆圈数量13=1+4×3,
……
∴第n个图形中圆圈数量为1+4×n=4n+1,
当n=7时,圆圈的数量为29,
故选:D.
【点睛】
本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.
9、A
【分析】
只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.
【详解】
解:A、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;
B、未知数最高次数是3,不是关于x的一元二次方程,不符合题意;
C、为分式方程,不符合题意;
D、含有两个未知数,不是一元二次方程,不符合题意
故选:A.
【点睛】
本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.
10、C
【分析】
解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.
【详解】
解:解不等式组得:,
∵不等式组有且仅有3个整数解,
∴,
解得:,
解方程得:,
∵方程的解为负整数,
∴,
∴,
∴a的值为:-13、-11、-9、-7、-5、-3,…,
∴符合条件的整数a为:-13,-11,-9,共3个,
故选C.
【点睛】
本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.
二、填空题
1、4或
【分析】
点B在x轴上,所以 ,分别讨论, 和两种情况,设 ,根据勾股定理求出x的值,即可得到OB的长.
【详解】
解:∵B在x轴上,
∴设 ,
∵ ,
∴ ,
①当时,B点横坐标与A点横坐标相同,
∴ ,
∴ ,
∴ ,
②当时, ,
∵点A坐标为,,
∴ ,
∴ ,
解得: ,
∴ ,
∴ ,
故答案为:4或.
【点睛】
本题考查平面直角坐标系中两点间距离以及勾股定理,分情况讨论是解题关键.
2、-2020
【分析】
利用相反数,倒数意义求出各自的值,代入原式计算即可得到结果.
【详解】
解:∵a,b互为相反数,c,d互为倒数,
∴a+b=0,cd=1,
则.
故答案为:-2020.
【点睛】
本题考查了代数式的求值,有理数的混合运算,相反数,倒数,熟练掌握各自的性质是解本题的关键.
3、11, 2或3或4.
【分析】
根据题意将代入求解即可;根据题意列出一元一次不等式组即可求解.
【详解】
解:当时,第1次运算结果为,第2次运算结果为,
当时,输出结果,
若运算进行了2次才停止,则有,
解得:.
可以取的所有值是2或3或4,
故答案为:11,2或3或4.
【点睛】
此题考查了程序框图计算,代数式求值以及解一元一次不等式组,解题的关键是根据题意列出一元一次不等式组.
4、59
【分析】
由题意知∠AOD=∠COD∠AOC,∠AOC=∠AOB;计算求解即可.
【详解】
解:∵OC平分∠AOB
∴∠AOC=∠AOB=
∴∠AOD=∠COD∠AOC=90°31°=59°
故答案为:59.
【点睛】
本题考查了角平分线与角的计算.解题的关键在于正确的表示各角的数量关系.
5、
【分析】
连接,,证明,,根据,即可求得
【详解】
解:连接,,
是的平分线,,,
,,,
在和中,
,
,
,
是的垂直平分线,
,
在和中,
,
,
,
,
,,
.
故答案为:.
【点睛】
本题考查了角平分线的性质,垂直平分线的性质,三角形全等的性质与判定,掌握以上性质定理是解题的关键.
三、解答题
1、
(1)见解析
(2)4
【分析】
(1)直接利用三视图的观察角度不同分别得出左视图和俯视图;
(2)利用左视图和俯视图不变得出答案即可.
(1)
解:左视图和俯视图如图所示:
,
(2)
解:在左视图和俯视图不变的情况下,可以从顶层移走右边1个正方体,可以从中间层移走靠右边两行的3个正方体,
故答案为:4.
【点睛】
本题主要考查了由实物画三视图,正确掌握观察角度是解题关键.
2、EF∥BC,DE=DC.
【分析】
先利用△AED≌△ACD得到∠3=∠4,利用角的平分线,转化为一对相等的内错角,继而判定直线的平行.
【详解】
解:EF、BC的位置关系是EF∥BC.
理由如下:
如图,
∵AD是∠BAC的角平分线(已知)
∴∠1=∠2.
在△AED和△ACD中,
,
∴△AED≌△ACD(SAS).
∴DE=DC(全等三角形的对应边相等),
∴∠3=∠4.
∵EC平分∠DEF(已知),
∴∠3=∠5.
∴∠4=∠5.
所以EF∥BC(内错角相等,两直线平行).
故答案为:EF∥BC,∠1=∠2,AD=AD,DE=DC.
【点睛】
本题考查了三角形的全等和性质,角的平分线即从角的顶点出发的射线把这个角分成相等的两个角,等腰三角形的性质,平行线的判定,熟练掌握灯光要三角形的性质,平行线的判定是解题的关键.
3、
(1),
(2)
【分析】
(1)利用配方法求解即可;
(2)利用因式分解法求解即可.
(1)
解:两边同加.得,
即,
两边开平方,得,
即,或,
∴,;
(2)
解:,
∴,
∴,
∴,或,
解得.
【点睛】
本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
4、
(1)
(2)
(3)
【分析】
(1)证明△ADE≌△BFE(ASA),推出AD=BF,构建方程求出CD即可.
(2)过点A作AM⊥BE于M,想办法求出AB,AM即可解决问题.
(3)如图3中,延长CA到N,使得AN=AG.设CD=DE=EF=CF=x,则AD=12﹣x,DN=BF=5+x,在Rt△ADE中,利用勾股定理求出x即可解决问题.
(1)
如图1中,
∵四边形ABCD是正方形,
∴CD=DE=EF=CF,∠CDE=∠DEF=∠F=90°,
∵AE⊥BE,
∴∠AEB=∠DEF=90°,
∴∠AED=∠BEF,
∵∠ADE=∠F=90°,DE=FE,
∴△ADE≌△BFE(ASA),
∴AD=BF,
∴AD=5+CF=5+CD,
∵AC=CD+AD=12,
∴CD+5+CD=12,
∴CD=,
∴正方形CDEF的面积为.
(2)
如图2中,
∵∠ABG=∠EBH,
∴当∠BAG=∠BEH=∠CBG时,△ABG∽△EBH,
∵∠BCG=∠ACB,∠CBG=∠BAG,
∴△CBG∽△CAB,
∴=CG•CA,
∴CG=,
∴BG===,
∴AG=AC﹣CG=,
过点A作AM⊥BE于M,
∵∠BCG=∠AMG=90°,∠CGB=∠AGM,
∴∠GAM=∠CBG,
∴cos∠GAM=cos∠CBG=,
∴AM=,
∵AB==13,
∴sin∠ABM=.
(3)
如图3中,延长CA到N,使得AN=AG.
∵AE=AG=AN,
∴∠GEN=90°,
由(1)可知,△NDE≌△BFR,
∴ND=BF,
设CD=DE=EF=CF=x,则AD=12﹣x,DN=BF=5+x,
∴AN=AE=5+x﹣(12﹣x)=2x﹣7,
在Rt△ADE中,
∵,
∴,
∴x=或(舍弃),
∴CD=.
【点睛】
本题考查了正方形的性质,勾股定理,三角形的全等,三角形相似的性质和判定,一元二次方程的解法,三角函数的正弦值,熟练掌握勾股定理,准确解一元二次方程,正弦值是解题的关键.
5、
(1)C
(2)
(3)
【分析】
(1)作出图形,根据切线的定义结合“关联点”即可求解;
(2)根据题意,为等边三角形,则仅与相切时,和有“关联点”,进而求得半径r的取值范围;
(3)根据关联点以及切线的性质,直径所对的角是直角,找到点的运动轨迹是以为圆心半径为的半圆在轴上的部分,进而即可求得的值.
(1)
解:如图,
,,,,
,轴,.
的半径为2,
直线与相切
直线l和的“关联点”是点
故答案为:
(2)
如图,根据题意与有“关联点”,则与相切,且与相离
,
是等边三角形
为的中点,则
当与相切时,则点为的内心
半径r的取值范围为:
(3)
如图,设和直线m的“关联点”为,,交轴于点,
是的切线,
的圆心为点,半径为t,
轴是的切线
点的运动轨迹是以为圆心半径为的半圆在轴上的部分,则点,
在直线上,
当直线与相切时,即当点与点重合时,最大,
此时与轴交于点,
当点运动到点时,则过点,
则
解得
b的取值范围为:
【点睛】
本题考查了切线的性质与判定,切线长定理,勾股定理,一次函数与坐标轴交点问题,等边三角形的性质,等边三角形的内心的性质,掌握以上知识是解题的关键.
【历年真题】最新中考数学模拟专项测试 B卷(含答案详解): 这是一份【历年真题】最新中考数学模拟专项测试 B卷(含答案详解),共19页。试卷主要包含了在中,,,那么的值等于,下列说法中正确的个数是等内容,欢迎下载使用。
【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解): 这是一份【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解),共21页。试卷主要包含了如果,且,那么的值一定是 .,下面几何体是棱柱的是等内容,欢迎下载使用。
【真题汇编】最新中考数学模拟考试 A卷(含答案及详解): 这是一份【真题汇编】最新中考数学模拟考试 A卷(含答案及详解),共22页。试卷主要包含了如图,在中,,,则的值为,下列方程是一元二次方程的是,多项式去括号,得,若,则的值是等内容,欢迎下载使用。