2022年高考数学(理数)一轮复习课时作业40《空间点、直线、平面之间的位置关系(学生版)
展开课时作业40 空间点、直线、平面之间的位置关系
一、选择题
1.在下列命题中,不是公理的是( )
A.平行于同一个平面的两个平面相互平行
B.过不在同一条直线上的三点,有且只有一个平面
C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内
D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
2.若空间三条直线a,b,c满足a⊥b,b∥c,则直线a与c( )
A.一定平行 B.一定相交
C.一定是异面直线 D.一定垂直
3.空间四边形两对角线的长分别为6和8,所成的角为45°,连接各边中点所得四边形的面积是( )
A.6 B.12
C.12 D.24
4.在如图所示的正方体ABCDA1B1C1D1中,E,F分别是棱B1B,AD的中点,异面直线BF与D1E所成角的余弦值为( )
A. B.
C. D.
5.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定( )
A.与a,b都相交
B.只能与a,b中的一条相交
C.至少与a,b中的一条相交
D.与a,b都平行
6.到空间不共面的四点距离相等的平面的个数为( )
A.1 B.4 C.7 D.8
二、填空题
7.三条直线可以确定三个平面,这三条直线的公共点个数是 .
8.在正四面体ABCD中,M,N分别是BC和DA的中点,则异面直线MN和CD所成角的余弦值为 .
9.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且==,则下列说法正确的是 .(填写所有正确说法的序号)
①EF与GH平行;
②EF与GH异面;
③EF与GH的交点M可能在直线AC上,也可能不在直线AC上;
④EF与GH的交点M一定在直线AC上.
三、解答题
10.如图所示,在正方体ABCDA1B1C1D1中,M,N分别是A1B1,B1C1的中点.问:
(1)AM与CN是否是异面直线?说明理由;
(2)D1B与CC1是否是异面直线?说明理由.
11.如图,在三棱锥PABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.求:
(1)三棱锥PABC的体积;
(2)异面直线BC与AD所成角的余弦值.
12.如图是三棱锥DABC的三视图,点O在三个视图中都是所在边的中点,则异面直线DO和AB所成角的余弦值等于( )
A. B. C. D.
13.正方体ABCDA1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是 (填序号).
①AC⊥BE;
②B1E∥平面ABCD;
③三棱锥EABC的体积为定值;
④直线B1E⊥直线BC1.
14.如图所示,在三棱柱ABCA1B1C1中,底面是边长为2的正三角形,侧棱A1A⊥底面ABC,点E,F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC=2FB=2.
(1)当点M在何位置时,BM∥平面AEF?
(2)若BM∥平面AEF,判断BM与EF的位置关系,说明理由;并求BM与EF所成的角的余弦值.
15.平面α过正方体ABCDA1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )
A. B. C. D.
16.在长方体ABCDA1B1C1D1中,已知底面ABCD为正方形,P为A1D1的中点,AD=2,AA1=,点Q是正方形ABCD所在平面内的一个动点,且QC=QP,则线段BQ的长度的最大值为 .
高考数学(理数)一轮复习:课时达标检测40 《直线与方程》(学生版): 这是一份高考数学(理数)一轮复习:课时达标检测40 《直线与方程》(学生版),共4页。
高考数学(文数)一轮复习课时练习:7.3《空间点、直线、平面之间的位置关系》(学生版): 这是一份高考数学(文数)一轮复习课时练习:7.3《空间点、直线、平面之间的位置关系》(学生版)
高考数学(理数)一轮复习:课时达标检测35《空间点、直线、平面之间的位置关系》(学生版): 这是一份高考数学(理数)一轮复习:课时达标检测35《空间点、直线、平面之间的位置关系》(学生版)