2020-2021学年山东省烟台市芝罘区七年级(下)期中数学试卷(五四学制)(word版无答案)
展开1.下列方程组是二元一次方程组的是( )
A.B.
C.D.
2.“篮球运动员投篮一次,投中篮筐”这一事件是( )
A.确定事件B.必然事件C.不可能事件D.不确定事件
3.下列命题是真命题的是( )
A.两条直线被第三条直线所截,同位角相等
B.在同一平面内,垂直于同一直线的两条直线平行
C.相等的两个角是对顶角
D.三角形的一个外角等于两个内角的和
4.如图,在下列条件中,能说明AC∥DE的是( )
A.∠A=∠CFDB.∠BED=∠EDF
C.∠BED=∠AD.∠A+∠AFD=180°
5.如图,一个游戏转盘被分成红、黄、蓝三个扇形,其中红、黄扇形的圆心角度数分别为210°,90°,转动转盘,停止后指针落在蓝色区域的概率是( )
A.B.C.D.
6.已知是二元一次方程组的解,则m﹣n的值是( )
A.1B.2C.3D.4
7.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )
A.12B.15C.18D.21
8.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?“意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程组为( )
A.B.
C.D.
9.如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为( )
A.4B.6C.8D.10
10.如图,在四边形ABCD中,AB∥CD,∠B=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②点M为BC的中点;③AB+CD=AD;④△ADM的面积是梯形ABCD面积的一半.其中正确的个数有( )
A.1个B.2个C.3个D.4个
11.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )
A.400cm2B.500cm2C.600cm2D.800cm2
12.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为( )
A.2000米B.2100米C.2200米D.2400米
二、填空题(每题3分,共24分)
13.将命题“同角的补角相等”写成“如果那么”的形式: .
14.如图,AB∥CD,∠1=50°,∠2=110°,则∠3= .
15.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是 .
16.已知(a+2b﹣3)2+|2a+36﹣2|=0,则(a+b)2021= .
17.如图,由4个直角边分别是1和2的直角三角形拼成一个“弦图”地面,在该地面上任意抛一颗豆子(豆子大小不记),豆子恰好落在中间灰色区域的概率是 .
18.关于x,y的二元一次方程组的解满足x﹣y=﹣2,则k的值是 .
19.一副直角三角尺如图叠放,现将含有30°的三角尺ABC固定不动,将含有45°的三角尺ADE绕点A顺时针旋转一个锐角α,使DE∥BC,则α的度数为 .
20.如图①是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图②,再沿BF折叠成图③,则图③中的∠CFE的度数是 .
三.解答题(本题共7个题,满分60分)
21.解方程组:.
22.小明和小亮两位同学做掷骰子(质地均匀的正方体)游戏,他们共做了100次试验,结果如下:
(1)计算“1点朝上”的频率和“6点朝上”的频率;
(2)小明说:“很据试验,一次试验中出现了3点朝上的频率最大”,小亮说:“若投掷1000次,则出现4点朝上的次数正好是200次”小明和小亮的说法正确吗?为什么?
(3)小明将一枚骰子任意投掷一次,求朝上的点数不小于4的概率.
23.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.
(1)求证:AB∥CD;
(2)若FG⊥BC于点H,DC=DB,∠D=100°,求∠1的度数.
24.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60辆客车,则多出一辆车,且其余客车恰好坐满,已知45辆客车每日每辆租金为220元,60座客车每日每辆租金为300元.
(1)春有学生共有多少人,原计划租45座客车多少辆?
(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算.
25.阅读下列材料:
小明同学遇到下列问题:解方程组小明发现如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的(2x+3y)看成一个整体,把(2x﹣3y)看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令m=2x+3y,n=2x﹣3y.原方程组化为,解的,把代入m=2x+3y,n=2x﹣3y,得解得所以,原方程组的解为.
请你参考小明同学的做法解方程组:
(1);
(2).
26.问题情境:
如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.
问题解决:
(1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由;
(2)在(1)的条件下,如果点P在线段MN或NM的征长线上运动时.请直接写出∠APC、α、B之间的数量关系;
(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC的度数.
27.如图,Rt△ABC,∠ACB=90°,AC=BC,已知点A和点C的坐标分别为(0,2)和(﹣1,0),过点A、B的直线关系式为y=kx+b.
(1)求点B的坐标和直线AB的函数关系式;
(2)在第二象限y=kx+b的图象上是否存在点P,使△ACP的面积为4?若存在;请求出符合条件的点P的坐标;若不存在,请说明理由.
朝上的点数
1
2
3
4
5
6
出现的次数
15
14
25
20
13
13
2023-2024学年山东省烟台市芝罘区七年级(上)期末数学试卷(五四学制)(含解析): 这是一份2023-2024学年山东省烟台市芝罘区七年级(上)期末数学试卷(五四学制)(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年山东省烟台市芝罘区八年级(下)期中数学试卷(五四学制)(含解析): 这是一份2022-2023学年山东省烟台市芝罘区八年级(下)期中数学试卷(五四学制)(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年山东省烟台市芝罘区八年级(下)期末数学试卷(五四学制)(含解析): 这是一份2022-2023学年山东省烟台市芝罘区八年级(下)期末数学试卷(五四学制)(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。