高中数学人教版新课标A必修4第三章 三角恒等变换综合与测试示范课ppt课件
展开三角函数求值主要有三种类型,即:(1)“给角求值”,一般给出的角都是非特殊角,从表面看较难,但仔细观察就会发现这类问题中的角与特殊角都有一定的关系,如和或差为特殊角,当然还有可能需要运用诱导公式.(2)“给值求值”,即给出某些角的三角函数式的值,求另外一些三角函数式的值,这类求值问题关键在于结合条件和结论中的角,合理拆、配角.当然在这个过程中要注意角的范围.(3)“给值求角”,本质上还是“给值求值”,只不过往往求出的是特殊角的值,在求出角之前还需结合函数的单调性确定角,必要时还要讨论角的范围.
专题一 ⇨三角函数的求值
三角函数式的化简,主要有以下几类:(1)对三角的和式,基本思路是降幂、消项和逆用公式;(2)对三角的分式,基本思路是分子与分母的约分和逆用公式,最终变成整式或较简式子;(3)对二次根式,则需要运用倍角公式的变形形式.在具体过程中体现的则是化归的思想,是一个“化异为同”的过程,涉及切弦互化,即“函数名”的“化同”;角的变换,即“单角化倍角”“单角化复角”“复角化复角”等具体手段,以实现三角函数式的化简.
专题二 ⇨三角函数式的化简
三角函数等式的证明包括无条件三角函数等式的证明和有条件三角函数等式的证明.对于无条件三角函数等式的证明,要认真分析等式两边三角函数式的特点,找出差异,化异角为同角,化异次为同次,化异名为同名,寻找证明的突破口.对于有条件三角函数等式的证明,要认真观察条件式与被证式的区别与联系,灵活使用条件等式,通过代入法、消元法等方法进行证明.
专题三 ⇨三角恒等式的证明
与三角恒等变形有关的综合问题一般有以下两种类型:(1)以三角恒等变形为主要的化简手段,考查三角函数的性质.当给出的三角函数关系式较为复杂,我们要先通过三角恒等变换,将三角函数的表达式变形化简,将函数表达式变形为y=Asin(ωx+φ)+k或y=Acs(ωx+φ)+k等形式,然后再根据化简后的三角函数,讨论其图象和性质.(2)以向量运算为载体,考查三角恒等变形.这类问题往往利用向量的知识和公式,通过向量的运算,将向量条件转化为三角条件,然后通过三角变换解决问题;有时还从三角与向量的关联点处设置问题,把三角函数中的角与向量的夹角统一为一类问题考查.
专题四 ⇨三角恒等变形的综合应用
『规律总结』 1.条件求值时,注意把已知条件和待求式先进行适当变形再求值.2.求三角函数型复合函数值域问题时,常常化为y=Asin(ωx+φ)+k形式或y=A(sinx)2+B(sinx)+C形式后再求更好.
三角式的恒等变换是解三角函数问题的基础,所谓三角式的恒等变换,就是运用有关概念和公式把给定的三角式化为另一等价形式.转化与化归的思想是三角恒等变换应用最广泛的,也是最基本的数学思想,它贯穿于三角恒等变换的始终,要认真体会理解,在解题过程中学会灵活应用.
专题五 ⇨转化与化归的思想
高中人教版新课标A第二章 统计综合与测试课堂教学课件ppt: 这是一份高中人教版新课标A第二章 统计综合与测试课堂教学课件ppt,共38页。PPT课件主要包含了第二章,章末整合提升,知识网络,专题突破,典例1,典例2,典例3,典例4,典例5,典例6等内容,欢迎下载使用。
高中数学人教版新课标A必修1第三章 函数的应用综合与测试教案配套课件ppt: 这是一份高中数学人教版新课标A必修1第三章 函数的应用综合与测试教案配套课件ppt,共30页。PPT课件主要包含了第三章,函数的应用,章末整合提升,知识结构,要点归纳,专题突破,典例1,典例2,典例3,典例4等内容,欢迎下载使用。
高中数学人教版新课标A必修1第二章 基本初等函数(Ⅰ)综合与测试教案配套ppt课件: 这是一份高中数学人教版新课标A必修1第二章 基本初等函数(Ⅰ)综合与测试教案配套ppt课件,共39页。PPT课件主要包含了第二章,基本初等函数Ⅰ,章末整合提升,知识结构,要点归纳,专题突破,典例1,典例3,典例4,典例5等内容,欢迎下载使用。