2020年八年级上学期期末数学试卷(含答案与解析)
展开
这是一份2020年八年级上学期期末数学试卷(含答案与解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )
A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1
2.下列边长相等的正多边形能完成镶嵌的是( )
A.2个正八边形和1个正三角形B.3个正方形和2个正三角形
C.1个正五边形和1个正十边形D.2个正六边形和2个正三角形
3.如图,在平面直角坐标系中,以为圆心,适当长为半径画弧,交轴于点,交轴于点,再分别一点为圆心,大于的长为半径画弧,两弧在第二象限交于点. 若点的坐标为,则的值为( )
A.B.C.D.
4.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )
A.B.
C.D.
5.如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则的度数是( )
A.B.C.D.
6.下列运算正确的是( )
A.a2+2a=3a3B.(﹣2a3)2=4a5
C.(a+2)(a﹣1)=a2+a﹣2D.(a+b)2=a2+b2
7.如图,△ABC的顶点A、B、C都在小正方形的顶点上,在格点F、G、H、I中选出一个点与点D、点E构成的三角形与△ABC全等,则符合条件的点共有( )
A.1个B.2个C.3个D.4个
8.若 x=3 是分式方程 的根,则 a 的值是
A.5B.-5C.3D.-3
9.如图,若为正整数,则表示的值的点落在( )
A.段①B.段②C.段③D.段④
10.如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于( )
A.20°B.40°C.50°D.70°
11.已知x+=6,则x2+=( )
A.38B.36C.34D.32
12.已知a是任何实数,若M=(2a﹣3)(3a﹣1),N=2a(a﹣)﹣1,则M、N的大小关系是( )
A.M≥N
B.M>N
C.M<N
D.M,N的大小由a的取值范围
二、填空题
13.如图所示,在Rt△ABC中,∠A=30°,∠B=90°,AB=12,D是斜边AC的中点,P是AB上一动点,则PC+PD的最小值为_____.
14.因式分解:3x3﹣12x=_____.
15.因式分解:______.
16.若am=5,an=6,则am+n=________.
17.正六边形的每个内角等于______________°.
18.若,,则的值为_____.
19.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB= .
20.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第_____块.
三、解答题
21.计算: .
22.如图,在中,,.
(1)请在图中用尺规作图的方法作出的垂直平分线交于点,并标出点;(不写作法,保留作图痕迹).
(2)在(1)的条件下,连接,求证:平分.
23.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
(1)求证:AC=CD;
(2)若AC=AE,求∠DEC的度数.
24.
如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
(1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.
25.某商场家电专柜购进一批甲,乙两种电器,甲种电器共用了10 350元,乙种电器共用了9 600元,甲种电器的件数是乙种电器的1.5倍,甲种电器每件的进价比乙种电器每件的进价少90元.
(1)甲、乙两种电器各购进多少件?
(2)商场购进两种电器后,按进价提高40%后标价销售,很快全部售完,求售完这批电器商场共获利多少元?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【详解】
2.D
解析:D
【解析】
【分析】
只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。
【详解】
A. 2个正八边形和1个正三角形:135°+135°+60°=330°,故不符合;
B. 3个正方形和2个正三角形:90°+90°+90°+60°+60°=390°,故不符合;
C. 1个正五边形和1个正十边形:108°+144°=252°,故不符合;
D. 2个正六边形和2个正三角形:120°+120°+60°+60°=360°,符合;
故选D.
【点睛】
本题考查多边形的内角,熟练掌握多边形的内角的度数是解题关键.
3.D
解析:D
【解析】
【分析】
根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得,再根据P点所在象限可得横纵坐标的和为0,进而得到a的数量关系.
【详解】
根据作图方法可得点P在第二象限角平分线上,
则P点横纵坐标的和为0,
故=0,
解得:a=.
故答案选:D.
【点睛】
本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.
4.A
解析:A
【解析】
【分析】
根据阴影部分面积的两种表示方法,即可解答.
【详解】
图1中阴影部分的面积为:,
图2中的面积为:,
则
故选:A.
【点睛】
本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.
5.A
解析:A
【解析】
【分析】
根据正多边形的内角,角的和差,可得答案.
【详解】
解:正方形的内角为90°,正五边形的内角为,正六边形的内角为,∠1=360°-90°-108°-120°=42°,
故选:A.
【点睛】
本题考查多边形的内角与外角,解题关键是利用正多边形的内角进行计算.
6.C
解析:C
【解析】
【分析】
根据整式的混合运算法则与完全平方公式进行判断即可.
【详解】
解:A.a2与2a不是同类项,不能合并,故本选项错误;
B.,故本选项错误;
C.,正确;
D.,故本选项错误.
故选C.
【点睛】
本题主要考查了整式的混合运算与完全平方公式,属于基础题,熟练掌握其知识点是解此题的关键.
7.B
解析:B
【解析】
分析:根据全等三角形的判定解答即可.
详解:由图形可知:AB=,AC=3,BC=,GD=,DE=,GE=3,DI=3,EI=,所以G,I两点与点D、点E构成的三角形与△ABC全等.
故选B.
点睛:本题考查了全等三角形的判定,关键是根据SSS证明全等三角形.
8.A
解析:A
【解析】
把x=3代入原分式方程得,,解得,a=5,经检验a=5适合原方程.
故选A.
9.B
解析:B
【解析】
【分析】
将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.
【详解】
解∵1.
又∵x为正整数,∴1,故表示的值的点落在②.
故选B.
【点睛】
本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.
10.C
解析:C
【解析】
【分析】
根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质求出CE=AE,求出∠EAC=∠C=20°,即可得出答案.
【详解】
∵在△ABC中,∠ABC=90°,∠C=20°,
∴∠BAC=180°−∠B−∠C=70°,
∵DE是边AC的垂直平分线,∠C=20°,
∴CE=AE,
∴∠EAC=∠C=20°,
∴∠BAE=∠BAC−∠EAC=70°−20°=50°,
故选:C.
【点睛】
此题考查线段垂直平分线的性质,解题关键在于掌握其性质.
11.C
解析:C
【解析】
【分析】把x+=6两边平方,利用完全平方公式化简,即可求出所求.
【详解】把x+=6两边平方得:(x+)2=x2++2=36,
则x2+=34,
故选:C.
【点睛】本题考查了分式的混合运算以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.
12.A
解析:A
【解析】
【分析】
将M,N代入到M-N中,去括号合并得到结果为(a﹣1)2≥0,即可解答
【详解】
∵M=(2a﹣3)(3a﹣1),N=2a(a﹣)﹣1,
∴M﹣N
=(2a﹣3)(3a﹣1)﹣2a(a﹣)+1,
=6a2﹣11a+3﹣2a2+3a+1
=4a2﹣8a+4
=4(a﹣1)2
∵(a﹣1)2≥0,
∴M﹣N≥0,则M≥N.
故选A.
【点睛】
此题考查整式的混合运算,解题关键是在于把M,N代入到M-N中计算化简得到完全平方式为非负数,从而得到结论.
二、填空题
13.12【解析】【分析】作C关于AB的对称点E连接ED易求∠ACE=60°则AC=AE且△ACE为等边三角形CP+PD=DP+PE为E与直线AC之间的连接线段其最小值为E到AC的距离=AB=12所以最小
解析:12
【解析】
【分析】
作C关于AB的对称点E,连接ED,易求∠ACE=60°,则AC=AE,且△ACE为等边三角形,CP+PD=DP+PE为E与直线AC之间的连接线段,其最小值为E到AC的距离=AB=12,所以最小值为12.
【详解】
作C关于AB的对称点E,连接ED,
∵∠B=90°,∠A=30°,
∴∠ACB=60°,
∵AC=AE,
∴△ACE为等边三角形,
∴CP+PD=DP+PE为E与直线AC之间的连接线段,
∴最小值为C'到AC的距离=AB=12,
故答案为12
【点睛】
本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.
14.3x(x+2)(x﹣2)【解析】【分析】先提公因式3x然后利用平方差公式进行分解即可【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案为3x(x+2)(x﹣2)【点睛】本题考查
解析:3x(x+2)(x﹣2)
【解析】
【分析】
先提公因式3x,然后利用平方差公式进行分解即可.
【详解】
3x3﹣12x
=3x(x2﹣4)
=3x(x+2)(x﹣2),
故答案为3x(x+2)(x﹣2).
【点睛】
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
15.【解析】【分析】提取公因式2x后再利用平方差公式因式分解即可【详解】故答案为:【点睛】本题考查了因式分解熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键
解析:
【解析】
【分析】
提取公因式2x后再利用平方差公式因式分解即可.
【详解】
.
故答案为:.
【点睛】
本题考查了因式分解,熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键.
16.【解析】【分析】根据同底数幂乘法性质am·an=am+n即可解题【详解】解:am+n=am·an=5×6=30【点睛】本题考查了同底数幂乘法计算属于简单题熟悉法则是解题关键
解析:【解析】
【分析】
根据同底数幂乘法性质am·an=am+n,即可解题.
【详解】
解:am+n= am·an=5×6=30.
【点睛】
本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.
17.120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°∴正六边形的每个内角为:=120°考点:多边形的内角与外角
解析:120
【解析】
试题解析:六边形的内角和为:(6-2)×180°=720°,
∴正六边形的每个内角为:=120°.
考点:多边形的内角与外角.
18.18【解析】【分析】先把xm+2n变形为xm(xn)2再把xm=2xn=3代入计算即可【详解】∵xm=2xn=3∴xm+2n=xmx2n=xm(xn)2=2×32=2×9=18;故答案为18【点睛】
解析:18
【解析】
【分析】
先把xm+2n变形为xm(xn)2,再把xm=2,xn=3代入计算即可.
【详解】
∵xm=2,xn=3,
∴xm+2n=xmx2n=xm(xn)2=2×32=2×9=18;
故答案为18.
【点睛】
本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.
19.85°【解析】试题分析:令A→南的方向为线段AEB→北的方向为线段BD根据题意可知AEDB是正南正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°考点:1方向角2三角
解析:85°.
【解析】
试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB是正南,正北的方向BD//AE
=45°+15°=60°又
=180°-60°-35°=85°.
考点:1、方向角. 2、三角形内角和.
20.2【解析】【分析】本题应先假定选择哪块再对应三角形全等判定的条件进行验证【详解】解:134块玻璃不同时具备包括一完整边在内的三个证明全等的要素所以不能带它们去只有第2块有完整的两角及夹边符合ASA满
解析:2
【解析】
【分析】
本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.
【详解】
解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,
只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.
故答案为:2.
【点睛】
本题考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
三、解答题
21.
【解析】
【分析】
先寻找2个分式分母的最小公倍式(最小公倍是用因式分解的方法去寻找),将最小公倍式作为结果的分母;然后在进行减法计算最后进行化简
【详解】
解:原式=
=
=
= = .
【点睛】
本题是对分式计算的考察,正确化简是关键
22.(1)详见解析;(2)详见解析.
【解析】
【分析】
(1)作线段AB的垂直平分线即可;
(2)根据线段垂直平分线的性质可得DA=DB,根据等边对等角可得,进而可得∠CBA =60°,然后可得答案.
【详解】
(1)解:如图所示,点就是所求.
(2)证明:由(1)可知:的垂直平分线交于点
且
平分
【点睛】
本题考查了基本作图,以及线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.
23.(1)证明见解析;(2)112.5°.
【解析】
【分析】
根据同角的余角相等可得到结合条件,再加上 可证得结论;
根据 得到 根据等腰三角形的性质得到 由平角的定义得到
【详解】
证明:
在△ABC和△DEC中,,
(2)∵∠ACD=90°,AC=CD,
∴∠1=∠D=45°,
∵AE=AC,
∴∠3=∠5=67.5°,
∴∠DEC=180°-∠5=112.5°.
24.(1)证明见解析
(2)等腰三角形,理由见解析
【解析】
【详解】
证明:(1)∵BE=CF,
∴BE+EF=CF+EF, 即BF=CE.
又∵∠A=∠D,∠B=∠C,
∴△ABF≌△DCE(AAS),
∴AB=DC.
(2)△OEF为等腰三角形
理由如下:∵△ABF≌△DCE,
∴∠AFB=∠DEC.
∴OE=OF.
∴△OEF为等腰三角形.
25.(1)甲购进45件,乙购进30件;(2)7980元
【解析】
试题分析:设乙种电器购进件,则甲种电器购进件,根据甲种电器每件的进价比乙种电器每件的进价少90元,列方程求解即可.
试题解析:(1)设乙种电器购进件,则甲种电器购进件,
依题意得,
解得:x=30,
经检验x=30是原方程的解,
答:甲种电器购进45件,乙种电器购进30件.
(2)售完这批电器商场共获利(10350+9600)×40%=7980元.
答:售完这批电器商场共获利7980元.
相关试卷
这是一份09 【人教版】八年级下册末数学试卷(含答案),共19页。试卷主要包含了高度抽象性,严密逻辑性,广泛应用性等内容,欢迎下载使用。
这是一份08 【人教版】八年级下册末数学试卷(含答案),共9页。试卷主要包含了高度抽象性,严密逻辑性,广泛应用性,下列命题等内容,欢迎下载使用。
这是一份07 【人教版】八年级下册末数学试卷(含答案),共12页。试卷主要包含了高度抽象性,严密逻辑性,广泛应用性等内容,欢迎下载使用。