2020-2021学年2.2 平面向量的线性运算教案设计
展开2.2.1 向量的加法运算及其几何意义教学目标:掌握向量的加法运算,并理解其几何意义; 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.教学难点:理解向量加法的定义.教学思路:一、设置情景:复习:向量的定义以及有关概念强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置情景设置:(1)某人从A到B,再从B按原方向到C, 则两次的位移和:(2)若上题改为从A到B,再从B按反方向到C, 则两次的位移和:(3)某车从A到B,再从B改变方向到C, 则两次的位移和:A BCA BCA B CC A B(4)船速为,水速为,则两速度和:二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法.2、三角形法则(“首尾相接,首尾连”)ABCa+ba+baabbabba+ba如图,已知向量a、b.在平面内任取一点,作=a,=b,则向量叫做a与b的和,记作a+b,即 a+b, 规定: a + 0-= 0 +aa a探究:(1)两向量的和与两个数的和有什么关系? 两向量的和仍是一个向量;(2)当向量与不共线时, |+|<||+||;什么时候|+|=||+||,什么时候|+|=||-||,当向量与不共线时,+的方向不同向,且|+|<||+||;当与同向时,则+、、同向,且|+|=||+||,当与反向时,若||>||,则+的方向与相同,且|+|=||-||;若||<||,则+的方向与相同,且|+b|=||-||.(3)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加OABaaabbb3.例一、已知向量、,求作向量+ 作法:在平面内取一点,作 ,则.4.加法的交换律和平行四边形法则问题:上题中+的结果与+是否相同? 验证结果相同从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应) 2)向量加法的交换律:+=+5.你能证明:向量加法的结合律:(+) +=+ (+) 吗?6.由以上证明你能得到什么结论? 多个向量的加法运算可以按照任意的次序、任意的组合来进行.三、应用举例:例二(P83—84)略变式1、一艘船从A点出发以的速度向垂直于对岸的方向行驶,船的实际航行速度的大小为,求水流的速度.变式2、一艘船从A点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,船的实际航行的速度的大小为,方向与水流间的夹角是,求和.练习:P84面1、2、3、4题四、小结 1、向量加法的几何意义;2、交换律和结合律;3、|+| ≤ || + ||,当且仅当方向相同时取等号.
人教版新课标A必修42.2 平面向量的线性运算教案设计: 这是一份人教版新课标A必修42.2 平面向量的线性运算教案设计
人教版新课标A必修4第二章 平面向量2.2 平面向量的线性运算教案: 这是一份人教版新课标A必修4第二章 平面向量2.2 平面向量的线性运算教案
数学必修4第二章 平面向量2.2 平面向量的线性运算教案: 这是一份数学必修4第二章 平面向量2.2 平面向量的线性运算教案