高中数学人教版新课标A必修42.5 平面向量应用举例教案
展开
这是一份高中数学人教版新课标A必修42.5 平面向量应用举例教案
第12课时复习课一、教学目标1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。2. 了解平面向量基本定理.3. 向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。4. 了解向量形式的三角形不等式:|||-||≤|±|≤||+||(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(||+||)=|-|+|+|.5. 了解实数与向量的乘法(即数乘的意义):6. 向量的坐标概念和坐标表示法7. 向量的坐标运算(加.减.实数和向量的乘法.数量积)8. 数量积(点乘或内积)的概念,·=||||cos=xx+yy注意区别“实数与向量的乘法;向量与向量的乘法”二、知识与方法向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直三、典型例题例1.对于任意非零向量与,求证:|||-|||≤|±|≤||+||证明:(1)两个非零向量与不共线时,+的方向与,的方向都不同,并且||-||<|±|<||+||(3)两个非零向量与共线时,①与同向,则+的方向与.相同且|+|=||+||.②与异向时,则+的方向与模较大的向量方向相同,设||>||,则|+|=||-||.同理可证另一种情况也成立。例2 已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设=,=,=,且||=2,||=1,| |=3,用与表示 解:如图建立平面直角坐标系xoy,其中, 是单位正交基底向量, 则B(0,1),C(-3,0),设A(x,y),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A(1,-),也就是= -, =, =-3所以-3=3+|即=3-3例3.下面5个命题:①|·|=||·||②(·)=·③⊥(-),则·=· ④·=0,则|+|=|-|⑤·=0,则=或=,其中真命题是( )A①②⑤ B ③④ C①③ D②④⑤巩固训练1.下面5个命题中正确的有( )①=·=·; ②·=·=;③·(+)=·+·; ④·(·)=(·)·; ⑤.A..①②⑤ B.①③⑤ C. ②③④ D. ①③2.下列命题中,正确命题的个数为( A )①若与是非零向量 ,且与共线时,则与必与或中之一方向相同;②若为单位向量,且∥则=|| ③··=|| ④若与共线,与共线,则与共线;⑤若平面内四点A.B.C.D,必有+=+A 1 B 2 C 3 D 43.下列5个命题中正确的是 ①对于实数p,q和向量,若p=q则p=q②对于向量与,若||=||则=③对于两个单位向量与,若|+|=2则=④对于两个单位向量与,若k=,则=4.已知四边形ABCD的顶点分别为A(2,1),B(5,4),C(2,7),D(-1,4),求证:四边形ABCD为正方形。
相关教案
这是一份人教版新课标A必修42.4 平面向量的数量积教案设计
这是一份高中数学人教版新课标A必修42.5 平面向量应用举例教案设计
这是一份高中数学2.4 平面向量的数量积教案设计