高中人教版新课标A3.2 简单的三角恒等变换教学设计
展开《三角恒等变换》复习课(2个课时)一、教学目标进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:二、知识与方法:1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、±β代替β、α=β等换元法可以推导出其它公式。你能根据下图回顾推导过程吗?cos(α-β)=cosαcosβ+sinαsinβcos(α+β)=cosαcosβ-sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβtan(α+β)= tan(α-β)= sin2α=2sinαcosαcos2α=cos2α- sin2α=2cos2α-1=1-2 sin2αtan2α=2.化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;3.求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围。4.证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等。5. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式, cosα= cosβcos(α-β)- sinβsin(α-β),1= sin2α+cos2α,==tan(450+300)等。例题例1 已知sin(α+β)=,sin(α-β)=,求的值。例2求值:cos24°﹣sin6°﹣cos72°例3 化简(1);(2)sin2αsin2β+cos2αcos2β-cos2αcos2β。例4 设为锐角,且3sin2α+2sin2β=1,3sin2α-2sin2β=0,求证:α+2β=。例5 如图所示,某村欲修建一横断面为等腰梯形的水渠,为降低成本,必须尽量减少水与水渠壁的接触面。若水渠断面面积设计为定值m,渠深8米。则水渠壁的倾角应为多少时,方能使修建的成本最低?分析:解答本题的关键是把实际问题转化成数学模型,作出横断面的图形,要减少水与水渠壁的接触面只要使水与水渠断面周长最小,利用三角形的边角关系将倾角为和横断面的周长L之间建立函数关系,求函数的最小值8A E D B C
人教版新课标A必修43.2 简单的三角恒等变换教案及反思: 这是一份人教版新课标A必修43.2 简单的三角恒等变换教案及反思
必修43.2 简单的三角恒等变换教学设计及反思: 这是一份必修43.2 简单的三角恒等变换教学设计及反思
高中人教版新课标A3.2 简单的三角恒等变换教案: 这是一份高中人教版新课标A3.2 简单的三角恒等变换教案