![北师大版八年级数学上册 5.4 应用二元一次方程组 ——增收节支_2(教案)第1页](http://img-preview.51jiaoxi.com/2/3/12505832/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版八年级数学上册 5.4 应用二元一次方程组 ——增收节支_2(教案)第2页](http://img-preview.51jiaoxi.com/2/3/12505832/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版八年级数学上册 5.4 应用二元一次方程组 ——增收节支_2(教案)第3页](http://img-preview.51jiaoxi.com/2/3/12505832/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北师大版八年级上册4 应用二元一次方程组——增收节支教案
展开
这是一份初中数学北师大版八年级上册4 应用二元一次方程组——增收节支教案,共6页。教案主要包含了教学目标,教学重点,教学难点,教学方法,课时安排,教学准备,教学过程,作业布置等内容,欢迎下载使用。
应用二元一次方程组 ——增收节支 【教学目标】一、教学知识点1.会用列表的方式分析题中已知量与未知量的关系,列出相应的二元一次方程组。2.继续熟练二元一次方程组的解法和基本思路。二、能力训练要求1.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型,培养学生数学的应用能力。2.加强学生列方程组的技能训练,形成解决实际问题的一般性策略。三、情感与价值观要求1.通过列方程组解决实际问题培养应用数学意识,提高学习数学的趣味性、现实性、科学性。2.培养学生的创新、开拓、克服学习中困难的科学精神。【教学重点】用列表的方式分析题目中的各个量的关系。加强学生列方程组的技能训练。【教学难点】借助列表分析问题中所蕴涵的数量关系。【教学方法】学生自主活动探究的方法。学生在列一元一次方程解决实际问题经验的基础上,根据基本量关系,由学生自主探索,列表分析问题中所蕴涵的数量关系。从而列出二元一次方程组,解决实际问题。【课时安排】1课时【教学准备】投影片两张:第一张:问题串;第二张:例题。【教学过程】一、创设情境,引入新课[师]我们来看一组填空题。(出示投影片)填空:(1)某工厂去年的总产值是x万元,今年的总产值比去年增加了20%,今年的总产值为_________。(2)某工厂去年的总支出为y万元,今年的总支出比去年减少了10%,则今年的总支出为_________。(3)某工厂今年的利润为780万元,根据(1)、(2)可得_________=780万元(利润=总产值-总支出)。下面我们就一起分析上面的三个填空。[师生共析](1)今年的总产值比去年增加了20%,即今年的总产值=去年的总产值×(1+20%)=(1+20%)x万元。(2)今年的总支出比去年减少了10%,即今年的总支出=去年的总支出×(1-10%)=(1-10%)y万元。(3)今年的利润为780万元,由(1)、(2)可得今年的利润又可表示为[(1+20%)x-(1-10%)y]万元,所以(1+20%)x-(1-10%)y=780这节课我们就来研究一下增收节支的问题。二、讲授新课[师]我们来看一个生活中实例:我校校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加了10%,总支出节约了20%,因而总收入比总支出多100万元。求解去年我校校办工厂的总收入和总支出各多少万元?[师生共析]我们可以注意到这个例子中蕴涵的数量关系比较复杂,我们是否可以用列表的形式将今年和去年的总支出和总收入列表进行对比,从而使他们的关系一目了然。[议一议,试一试]如果假设去年的总产值是x万元,总支出是y万元,根据题意,填充下面表格: 总收入/万元总支出/万元去年xy今年(1+10%)x(1-20%)y所以根据题意可填入表格,今年的总产值为(1+10%)x万元,总支出为(1-20%)万元,由条件就可得到方程组:[师]下面我们就来解上面这个方程组,分组来完成,看哪一个组做得快。[生]老师,我们组解出来了。解法如下:解:化简方程组,得由①得x=50+y ④把④代入③,得1.1(50+y)-0.8y=100,0.3y=45y=150把y=150代入④,得x=200所以方程组的解为即去年的总产值是200万元,总支出为150万元。[生]我们组也解出来了。我觉得刚才的一组在处理方程组中的方程②处理得不彻底,因此,系数是小数,给解方程带来了不必要的麻烦。我们组的解法如下:解:由②,得1.1x-0.8y=100方程两边再同时乘以10,得11x-8y=1000 ③由①,得x=50+y ④把④代入③,得3y=450y=150把y=150代入④,得x=200.[师]不错。能够恰当地利用等式的性质,使问题简化,值得提倡。[生]我们组用的不是代入消元法,我们组是在第二组解法的基础上,用的加减消元法。[师]我们已能用多种方法解方程组,看来最关键的一步应是如何根据题意,列出方程组,下面我们再来看一个例子。出示投影片[例1]医院用甲、乙两种原料为手术后的病人配制营养品。每克甲种原料含0.5单位蛋白质和1单位铁质,每克乙种原料含0.7单位蛋白质和0.4单位蛋白质。若病人每餐需要35单位蛋白质和40单位蛋白质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?[师生共析]我们可以设每餐甲、乙两种原料各x、y克恰好满足病人的需要。根据题意可知每克甲种原料含0.5单位蛋白质和1单位铁质,所以x克甲种原料含0.5x单位蛋白质和x单位铁质。每克乙种原料含0.7单位蛋白质和0.4单位铁质,所以y克乙种原料含0.7x单位蛋白质和0.4x单位铁质,因此,我们可列出下列表格: 甲种原料x克乙种原料y克所配制的营养品其中所含的蛋白质0.5x单位0.7y单位35单位其中所含的铁质x单位0.4y单位40单位根据题意得化简,得①-②,得5y=150y=30将y=30代入①,得x=28所以每餐需甲种原料28克,乙种原料30克。三、随堂练习1.解:设一、二两班学生数分别为x名、y名,填写下表: 一班二班两班总数学生数/名xy100达标学生数/名87.5%x75%y81%(x+y) 根据题意得:化简,得③+①×60,得125x=6000x=48把x=48代入①,得y=52所以一班有48人,二班有52人。2.解:设甲、乙两人每时分别行走x千米,y千米,填写下表并求x、y的值。 甲行走的路程乙行走的路程两人行走的路程和第一种情况(甲先走2小时)(2+2.5)x2.5y(2+2.5)x+2.5y第二种情况(乙先走2小时)3x(2+3)y3x+(2+3)y根据题意得:化简,得③×2-④得6x=36x=6把x=6代入④,得y=3.6所以,甲乙两人每小时各走6千米,3.6千米。四、课时小结这节课我们借助于列表分析具体问题中蕴涵的数量关系,使题目中的相等关系随之而清晰地浮现出来。同时,我们通过解二元一次方程组让问题得以解决,提高了列方程组的技能。【作业布置】1.课后习题;2.总结列二元一次方程组解决实际问题的一般步骤;3. 活动与探究;现有两种溶液,甲种溶液由酒精1升,水3升配制而成,乙种溶液由酒精3升,水2升配制而成,要配制成50%的酒精溶液7升,请问两种溶液各需多少升?过程:题目中的数据较多,我们可以将它们统一列在表格中,从而使它们之间的关系一目了然,便于寻找等量关系。首先有: 酒精(升)水(升)溶液(升)浓度甲13425%乙32560%设甲、乙两种溶液分别需要x,y升,则: 溶液(升)浓度酒精(升)甲x(x≤4)25%x·25%乙y(y≤5)60%y·60%合计750%3.5有等量关系:结果:解:设甲、乙两种溶液x升、y升,根据题意,可得:解得所以需甲种溶液2升,乙种溶液5升(全部溶液),可配制成50%的酒精溶液7升。【板书设计】增收节支一、例1增收节支分析:用表格分析题意:解:(学生板演)二、随堂练习(由学生板演)三、课时小结
相关教案
这是一份初中数学北师大版八年级上册4 应用二元一次方程组——增收节支一等奖教案设计,共4页。教案主要包含了活动探究,例题分析,课堂达标,学习小结,课后反思等内容,欢迎下载使用。
这是一份北师大版八年级上册4 应用二元一次方程组——增收节支教学设计,共5页。教案主要包含了教学重点,教学方式,教学准备等内容,欢迎下载使用。
这是一份北师大版八年级上册第五章 二元一次方程组4 应用二元一次方程组——增收节支教案设计,共6页。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)