高中数学第三册--选修Ⅱ 第一章 概率与统计教案(第7课)抽样方法(3)
展开课 题: 1.3抽样方法(三)
教学目的:
1 理解分层抽样的概念
2.会用分层抽样从总体中抽取样本
教学重点:分层抽样概念的理解及实施步骤
教学难点:分层抽样从总体中抽取样本
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1. 在统计学里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量.总体中所有个体的平均数叫做总体平均数,样本中所有个体的平均数叫做样本平均数.
2.简单随机抽样:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样
3.⑴用简单随机抽样从含有N个个体的总体中抽取一个容量为的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为;
⑵简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;
⑶简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.
4.抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本
适用范围:总体的个体数不多时
优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.
5.随机数表法: 随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码
6.简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样
7.系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样.
8.系统抽样的步骤:
①采用随机的方式将总体中的个体编号为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等
②为将整个的编号分段(即分成几个部分),要确定分段的间隔k当(N为总体中的个体的个数,n为样本容量)是整数时,k=;当不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数能被n整除,这时k=.
③在第一段用简单随机抽样确定起始的个体编号
④按照事先确定的规则抽取样本(通常是将加上间隔k,得到第2个编号+k,第3个编号+2k,这样继续下去,直到获取整个样本)
9.①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;
②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的.
③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除在进行系统抽样
二、讲解新课:
1.分层抽样: 当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,所分成的部分叫做层
2.不放回抽样和放回抽样:
在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.
随机抽样、系统抽样、分层抽样都是不放回抽样
三、讲解范例:
例1.某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,适合的抽取样本的方法是 ( )
A. 简单的随机抽样 B. 系统抽样
C. 先从老年中排除一人,再用分层抽样 D.分层抽样
答案:C
例2.一个单位有500名职工,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解这个单位职工与身体状况有关的某项指标,如何从中抽取一个容量为100的样本?
解:由于职工年龄与这项指标有关,故适于用分层抽样,抽样过程如下:
⑴确定样本容量与总体的个体数之比100:500=1:5;
⑵利用抽样比确定各年龄段应抽取的个体数,依次为
,,,即25,56,19.
⑶利用简单随机抽样或系统抽样的方法,在各年龄段分别抽取25,56,19人,然后合在一起,就是所要抽取的样本.
说明:①分层抽样适用于总体由差异比较明显的几个部分组成的情况,是等概率抽样,它也是客观的、公平的;
②分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,使样本具有较好的代表性,而且在各层抽样时可以根据情况采用不同的抽样方法,因此在实践中有着非常广泛的应用.
例3某学校有职工140人,其中教师91人,教辅行政人员28人,总务后勤人员21人. 为了解职工的某种情况,要从中抽取一个容量为20的样本.以下的抽样方法中,依简单随机抽样、系统抽样、分层抽样顺序的是 ( )
方法1:将140人从1~140编号,然后制作出有编号1~140的140个形状、大小相同的号签,并将号签放人同一箱子里进行均匀搅拌,然后从中抽取20个号签,编号与签号相同的20个人被选出;
方法2:将140人分成20组,每组7人,并将每组7人按1—7编号,在第一组采用抽签法抽出号(1≤≤7),则其余各组尾号也被抽到,20个人被选出;
方法3:按20:140=1:7的比例,从教师中抽取13人,从教辅行政人员中抽取4人,从总务后勤人员中抽取3人.从各类人员中抽取所需人员时,均采用随机数表法,可抽到20个人.
A.方法2,方法1,方法3 B.方法2,方法3,方法1
C.方法1,方法2,方法3 D.方法3,方法1,方法2
答案:C
四、课堂练习:
1 . 统计某区的高考成绩,在总数为3000人的考生中,省重点中学毕业生有300人,区重点中学毕业生有900人,普通中学毕业生有1700人,其他考生有100人.从中抽取一个容量为300的样本进行分析,各类考生要分别抽取多少人?
2. 某农场在三块地种植某种试验作物,其中平地种有150亩,河沟地种有30亩,坡地种有90亩.现从中抽取一个容量为18的样本,各类地要分别抽取多少亩?
3. 一个工厂有若干车间,今采用分层抽样方法从全厂某天的2048件产品中抽取一个容量为128的样本进行质量检查.若一车间这一天生产256件产品,则从该车间抽取的产品件数为________
答案:1. 省重点中学抽取30人,区重点中学抽取90人,普通中学抽取170人,其他考生抽取10人
2. 平地抽取10亩,河沟地抽取2亩,坡地抽取6亩
3. 16
五、小结 :三种抽样方法的比较
类别 | 共同点 | 各自特点 | 相互联系 | 适用范围 |
简单随机抽样 | 抽样过程中每个个体被抽取的概率相等 | 从总体中逐个抽取 |
| 总体中的个数较少 |
系统抽样 | 将总体均分成几部分,按事先确定的规则分别在各部分中抽取 | 在起始部分抽样时采用简单随机抽样 | 总体中的个数较多 | |
分层抽样 | 将总体分成几层,分层进行抽取 | 各层抽样时采用简单随机抽样或系统抽样 | 总体由差异明显的几部分组成 |
六、课后作业:
七、板书设计(略)
八、课后记: