2020-2021学年4 角平分线教案
展开
这是一份2020-2021学年4 角平分线教案,共2页。
§11.3.1 角的平分线的性质(一) 一.提出问题,创设情境 问题1:三角形中有哪些重要线段. 问题2:你能作出这些线段吗? 如果老师手里只有直尺和圆规,你能帮我设计一个作角的平分线的操作方案吗? 二.导入新课 议一议:下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗? 教师活动:演示角平分仪器的操作过程,使学生直观了解得到射线AC的方法.AB=ADBC=DCAC=AC 所以△ABC≌△ADC(SSS). 所以∠CAD=∠CAB. 即射线AC就是∠DAB的平分线. 老师再提出问题: 通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得. (分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性) 讨论结果展示: 作已知角的平分线的方法: 已知:∠AOB. 求作:∠AOB的平分线. 作法: (1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N. (2)分别以M、N为圆心,大于MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求. (教师根据学生的叙述,作多媒体课件演示,使学生能更直观地理解画法,提高学习数学的兴趣). 议一议: 1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗? 2.第二步中所作的两弧交点一定在∠AOB的内部吗? (设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯) 学生讨论结果总结: 1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线. 2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了. 3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可. 4.这种作法的可行性可以通过全等三角形来证明. 练一练:任意画一角∠AOB,作它的平分线. 三.随堂练习:课本P19练习. 练后总结: 平角∠AOB的平分线OC与直线AB垂直.将OC反向延长得到直线CD,直线CD与AB也垂直. 四.课时小结 本节课中我们利用已学过的三角形全等的知识,探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,进一步体会温故而知新是一种很好的学习方法. 五.课后作业 课本P22习题11.2第1、2题.
相关教案
这是一份初中数学湘教版八年级下册1.4 角平分线的性质教学设计及反思,共3页。
这是一份2021学年1.4 角平分线的性质教学设计及反思,共2页。教案主要包含了互动学习,巩固练习,回顾与小结等内容,欢迎下载使用。
这是一份初中湘教版1.4 角平分线的性质教案,共2页。教案主要包含了创设情境,引入课题,合作交流,探究新知等内容,欢迎下载使用。