所属成套资源:【专项练习】冲刺数学中考分类专项练习(3期练习,难度递增,教师版含解析)
【专项练习】中考数学试题分专题训练 专题2.2 不等式(第03期)(教师版含解析)
展开这是一份【专项练习】中考数学试题分专题训练 专题2.2 不等式(第03期)(教师版含解析),共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
一、单选题
1.不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
【来源】湖南省长沙市2018年中考数学试题
【答案】C
点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
2.不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
【来源】湖南省湘西州2018年中考数学试卷
【答案】C
【解析】【分析】将每一个不等式的解集在数轴上表示出来,然后逐项进行对比即可得答案,方法是先定界点,再定方向.
【详解】不等式组的解集在数轴上表示如下:
故选C.
【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.
3.若m>n,则下列不等式正确的是( )
A. m﹣2<n﹣2 B. C. 6m<6n D. ﹣8m>﹣8n
【来源】广西钦州市2018年中考数学试卷
【答案】B
【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
4.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是( )
A. 4≤m<7 B. 4<m<7 C. 4≤m≤7 D. 4<m≤7
【来源】湖北省荆门市2018年中考数学试卷
【答案】A
【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.
【详解】解不等式3x﹣m+1>0,得:x>,
∵不等式有最小整数解2,
∴1≤<2,
解得:4≤m<7,
故选A.
【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键. 学科*网
5.关于x的不等式的解集为x>3,那么a的取值范围为( )
A. a>3 B. a<3 C. a≥3 D. a≤3
【来源】湖北省恩施州2018年中考数学试题
【答案】D
点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
6.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为( )
A. B. C. D.
【来源】山东省滨州市2018年中考数学试题
【答案】B
【解析】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.
详解:解不等式x+1≥3,得:x≥2,
解不等式﹣2x﹣6>﹣4,得:x<﹣1,
将两不等式解集表示在数轴上如下:
故选B.
点睛:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.
7.不等式组有3个整数解,则的取值范围是( )
A. B. C. D.
【来源】山东省泰安市2018年中考数学试题
【答案】B
点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.
8.不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
【来源】辽宁省营口市2018届九年级中考模拟(一)数学试题
【答案】B
点睛:本题主要考查一元一次不等式组的解法,并能在数轴上正确表示出解集,解决本题的关键是要熟练掌握一元一次不等式组的解法和在数轴上表示解集的方法.
9.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为( )
A. B. C. 1 D. 2
【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)
【答案】C
【解析】【分析】先求出不等式的解集,根据只有四个整数解确定出a的取值范围,解分式方程后根据解为非负数,可得关于a的不等式组,解不等式组求得a的取值范围,即可最终确定出a的范围,将范围内的整数相加即可得.
【详解】解不等式,得,
由于不等式组只有四个整数解,即只有4个整数解,
∴,
∴;
【点睛】本题考查含有参数的不等式和含有参数的分式方程的应用,熟练掌握不等式组的解法、分式方程的解法以及解分式方程需要注意的事项是解题的关键.
10.不等式组的最小整数解是( )
A. -1 B. 0 C. 1 D. 2
【来源】湖南省娄底市2018年中考数学试题
【答案】B
【解析】【分析】分别求出不等式组中每一个不等式的解集,然后确定出不等式组的解集,即可求出最小的整数解.
【详解】,
解不等式①得,x≤2,
解不等式②得,x>-1,
所以不等式组的解集是:-1<x≤2,
所以最小整数解为0,
故选B.
【点睛】本题考查了解一元一次不等式组,不等式组的整数解,熟练掌握一元一次不等式组的解法是关键.
二、填空题
11.不等式组的最小整数解是_____.
【来源】河南省2018年中考数学试卷
【答案】-2
点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.
12.已知关于x的不等式组无解,则a的取值范围是_____.
【来源】贵州省贵阳市2018年中考数学试卷
【答案】a≥2
【解析】【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.
【详解】,
由①得:x≤2,
由②得:x>a,
∵不等式组无解,
∴a≥2,
故答案为:a≥2.
【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找. 学科*网
13.若关于x的一元一次不等式组有2个负整数解,则a的取值范围是_____.
【来源】黑龙江省龙东地区2018年中考数学试卷
【答案】﹣3≤a<﹣2
【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集和已知得出关于a的不等式是解此题的关键.
14.一元一次不等式组的解集为_____.
【来源】贵州省铜仁市2018年中考数学试题
【答案】x>﹣1
【解析】分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.
详解:,
由①得:x>-1,
由②得:x>-2,
所以不等式组的解集为:x>-1.
故答案为x>-1.
点睛:主要考查了解一元一次不等式组,解题的关键是熟练掌握解不等式的一般步骤和确定不等式组解集的公共部分.
15.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.
【来源】湖南省湘西州2018年中考数学试卷
【答案】1
【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.
16.不等式组的解集为_____.
【来源】黑龙江省哈尔滨市2018年中考数学试题
【答案】3≤x<4.
【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.
详解:
∵解不等式①得:x≥3,
解不等式②得:x<4,
∴不等式组的解集为3≤x<4,
故答案为;3≤x<4.
点睛:本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.
17.用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.
【来源】北京市2018年中考数学试卷
【答案】 2 3 -1
点睛:考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.
18.若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.
【来源】山东省聊城市2018年中考数学试卷
【答案】或1.
【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.
详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,
∴2x-1≤x<2x-1+1,
解得,0<x≤1,
∵2x-1是整数,
∴x=0.5或x=1,
故答案为:x=0.5或x=1.
点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.
三、解答题
19.(1)求不等式组的整数解;
(2)先化简,后求值(1﹣)÷,其中a=+1.
【来源】湖北省荆州市2018年中考数学试卷
【答案】(1)不等式组的整数解为﹣1、0;(2),.
【解析】
【分析】(1)分别解每个不等式,再根据“大小小大中间找”确定不等式组的解集,从而得出答案;
(2)先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.
【点睛】本题考查了分式的化简求值与解一元一次不等式组,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解不等式的能力.学科*网
20.解不等式组:
【来源】辽宁省大连市2018年中考数学试卷
【答案】不等式组的解集为x≤﹣1.
【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.
详解:
解不等式①得:x≤﹣1,
解不等式②得:x≤3,
∴不等式组的解集为x≤﹣1.
点睛:本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.
21.攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?
【来源】四川省攀枝花市2018年中考数学试题
【答案】该同学的家到学校的距离在大于12小于等于13的范围.
点睛:此题主要考查了一元一次不等式的应用,根据题意明确其收费标准分两部分是完成本题的关键.
22.某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.
(1)求修建一个足球场和一个篮球场各需多少万元?
(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?
【来源】辽宁省葫芦岛市2018年中考数学试卷
【答案】(1)修建一个足球场和一个篮球场各需3.5万元,5万元;(2)至少可以修建7个足球场.
【解析】
【分析】(1)设修建一个足球场x万元,一个篮球场y万元,根据等量关系:建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元,列方程组进行求解即可得;
(2)设足球场m个,则篮球场(20﹣m)个,根据投入资金不超过90万元列出不等式进行求解即可得.
【详解】(1)设修建一个足球场x万元,一个篮球场y万元,根据题意可得:
,解得:,
答:修建一个足球场和一个篮球场各需3.5万元,5万元;
(2)设足球场m个,则篮球场(20﹣m)个,根据题意可得:
3.5m+5(20﹣m)≤90,
解得:m≥6,
答:至少可以修建7足球场.
【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,弄清题意,找准备等量关系列出方程组、找准不等量关系列出不等式是解题的关键.
23.某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.
(1)求今年A型车每辆车的售价.
(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元,1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?
【来源】四川省广安市2018年中考数学试题
【答案】(1)今年A型车每辆车售价为1600元;(2)购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.
详解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,
根据题意得:
,
解得:x=1600,
经检验,x=1600是原分式方程的解,
∴今年A型车每辆车售价为1600元.
(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,
根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.
∵B型车的进货数量不超过A型车数量的两倍,
∴45﹣a≤2a,解得:a≥15.
∵﹣100<0,
∴y随a的增大而减小,
∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.
答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.
点睛:本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)利用一次函数的性质求出最大利润.
24.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
【来源】内蒙古通辽市2018年中考数学试卷
【答案】(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.
【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
根据题意可得,解得,
答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;
【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.
25.在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.
(1)求购买一个篮球,一个足球各需多少元?
(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?
【来源】辽宁省阜新市2018年中考数学试题
【答案】(1)购买一个篮球,一个足球各需150元,100元;(2)最多可购买4个篮球.
【解析】分析:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意列出方程组解答即可;
(2)设购买a个篮球,根据题意列出不等式解答即可.
详解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:
,
解得:,
答:购买一个篮球,一个足球各需150元,100元;
(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10-a)≤1050,
解得:a≤4,
答;最多可购买4个篮球.
点睛:本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据总费用作为不等关系列出不等式求解.
26.某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.
(1)求A、B两种型号的自行车单价分别是多少元?
(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?
【来源】广西壮族自治区贺州市2018年中考数学试卷
【答案】(1)A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆;(2)至多能购进B型车20辆.
【详解】(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,
根据题意得:,
解得:,
答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆;
(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,
根据题意得:260(130﹣m)+1500m≤58600,
解得:m≤20,
答:至多能购进B型车20辆.
【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.学科*网
27.某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.
| 甲种原料(单位:千克) | 乙种原料(单位:千克) | 生产成本(单位:元) |
A商品 | 3 | 2 | 120 |
B商品 | 2.5 | 3.5 | 200 |
设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:
(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;
(2)x取何值时,总成本y最小?
【来源】云南省2018年中考数学试卷
【答案】(1)y=﹣80x+20000,24≤x≤86;(2)y=13120元.
【解析】【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;
(2)利用一次函数增减性进而得出答案.
【点睛】本题考查了一次函数的应用以及不等式组的应用,正确利用表格获得正确信息是解题关键.
28.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.
| 甲种客车 | 乙种客车 |
载客量/(人/辆) | 30 | 42 |
租金/(元/辆) | 300 | 400 |
学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.
(1)参加此次研学旅行活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为 辆;
(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.
【来源】湖北省咸宁市2018年中考数学试卷
【答案】(1)老师有16名,学生有284名;(2)8;(3)共有3种租车方案,最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.
【详解】(1)设老师有x名,学生有y名,
依题意,列方程组为,
解得:,
答:老师有16名,学生有284名;
(2)∵每辆客车上至少要有2名老师,
∴汽车总数不能大于8辆;
又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,
综合起来可知汽车总数为8辆,
故答案为:8;
∴共有3种租车方案:
方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;
方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;
方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;
故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.
【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组是解题的关键.
相关试卷
这是一份【专项练习】中考数学试题分专题训练 专题6.3 概率(第02期)(教师版含解析),共36页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份【专项练习】中考数学试题分专题训练 专题2.2 不等式(第02期)(教师版含解析),共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份【专项练习】中考数学试题分专题训练 专题2.1 方程(第02期)(教师版含解析),共33页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。