|试卷下载
终身会员
搜索
    上传资料 赚现金
    【专项练习】中考数学试题分专题训练 专题6.3 概率(第02期)(教师版含解析)
    立即下载
    加入资料篮
    【专项练习】中考数学试题分专题训练 专题6.3 概率(第02期)(教师版含解析)01
    【专项练习】中考数学试题分专题训练 专题6.3 概率(第02期)(教师版含解析)02
    【专项练习】中考数学试题分专题训练 专题6.3 概率(第02期)(教师版含解析)03
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【专项练习】中考数学试题分专题训练 专题6.3 概率(第02期)(教师版含解析)

    展开
    这是一份【专项练习】中考数学试题分专题训练 专题6.3 概率(第02期)(教师版含解析),共36页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    
    一、单选题
    1.【浙江省宁波市2018年中考数学试卷】有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为  
    A. B. C. D.
    【答案】C

    【点睛】本题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.
    2.【湖北省孝感市2018年中考数学试题】下列说法正确的是( )
    A. 了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查
    B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定
    C. 三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是
    D. “任意画一个三角形,其内角和是”这一事件是不可能事件
    【答案】D
    【解析】分析:根据随机事件的概念以及概率的意义结合选项可得答案.
    详解:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,此选项错误;
    B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,此选项错误;
    C、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,此选项错误;
    D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,此选项正确.
    故选:D.
    点睛:此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.
    3.下列说法正确的是(  )
    A. “打开电视机,正在播放《达州新闻》”是必然事件
    B. 天气预报“明天降水概率50%,是指明天有一半的时间会下雨”
    C. 甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.3,S2=0.4,则甲的成绩更稳定
    D. 数据6,6,7,7,8的中位数与众数均为7
    四川省达州市2018年中考数学试题
    【答案】C

    点睛:此题主要考查了随机事件以及众数、中位数的定义以及方差的定义,正确把握相关定义是解题关键.
    4.【山东省烟台市2018年中考数学试卷】下列说法正确的是(  )
    A. 367人中至少有2人生日相同
    B. 任意掷一枚均匀的骰子,掷出的点数是偶数的概率是
    C. 天气预报说明天的降水概率为90%,则明天一定会下雨
    D. 某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖
    【答案】A
    【解析】分析:利用概率的意义和必然事件的概念的概念进行分析.
    详解:A、367人中至少有2人生日相同,正确;
    B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是,错误;
    C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;
    D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;
    故选:A.
    点睛:此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念.
    5.【湖北省襄阳市2018年中考数学试卷】下列语句所描述的事件是随机事件的是(  )
    A. 任意画一个四边形,其内角和为180°
    B. 经过任意点画一条直线
    C. 任意画一个菱形,是中心对称图形
    D. 过平面内任意三点画一个圆
    【答案】D

    【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    6.【湖北省宜昌市2018年中考数学试卷】在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为(  )
    A. B. C. D.
    【答案】B
    【解析】分析:直接利用概率公式求解.
    详解:这句话中任选一个汉字,这个字是“绿”的概率=.
    故选:B.
    点睛:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
    7.【山东省淄博市2018年中考数学试题】下列语句描述的事件中,是随机事件的为(  )
    A. 水能载舟,亦能覆舟 B. 只手遮天,偷天换日
    C. 瓜熟蒂落,水到渠成 D. 心想事成,万事如意
    【答案】D

    点睛:此题主要考查了随机事件以及必然事件、不可能事件,正确把握相关定义是解题关键.
    8.【山东省威海市2018年中考数学试题】一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是(  )
    A. B. C. D.
    【答案】B
    【解析】分析:画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.
    详解:画树状图如下:

    由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,
    所以抽取的两张卡片上数字之积为负数的概率为=,
    故选:B.
    点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    9.【湖北省武汉市2018年中考数学试卷】一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是(  )
    A. B. C. D.
    【答案】C

    【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
    10.【山东省聊城市2018年中考数学试卷】小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )
    A. B. C. D.
    【答案】B
    【解析】分析: 先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.
    详解: 列表如下:

    共有6种等可能的结果,其中小亮恰好站在中间的占2种,
    所以小亮恰好站在中间的概率=.
    故选:B.
    点睛:本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
    11.【江苏省泰州市2018年中考数学试题】小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是(  )
    A. 小亮明天的进球率为10%
    B. 小亮明天每射球10次必进球1次
    C. 小亮明天有可能进球
    D. 小亮明天肯定进球
    【答案】C

    点睛:此题主要考查了概率的意义,正确理解概率的意义是解题关键.
    12.【浙江省湖州市2018年中考数学试题】某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是(  )
    A. B. C. D.
    【答案】C
    【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
    详解:将三个小区分别记为A、B、C,
    列表如下:

    A
    B
    C
    A
    (A,A)
    (B,A)
    (C,A)
    B
    (A,B)
    (B,B)
    (C,B)
    C
    (A,C)
    (B,C)
    (C,C)

    由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
    所以两个组恰好抽到同一个小区的概率为.
    故选:C.
    点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    13.【江苏省徐州巿2018年中考数学试卷】下列事件中,必然事件是(  )
    A. 抛掷1个均匀的骰子,出现6点向上
    B. 两直线被第三条直线所截,同位角相等
    C. 366人中至少有2人的生日相同
    D. 实数的绝对值是非负数
    【答案】D

    【点睛】本题考查了必然事件、不可能事件、随机事件的概念.理解概念是解决这类基础题的主要方法.
    14.【广西钦州市2018年中考数学试卷】从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是(  )
    A. B. C. D.
    【答案】C
    【解析】【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.
    【详解】列表如下:

    ﹣2
    ﹣1
    2
    ﹣2

    2
    ﹣4
    ﹣1
    2

    ﹣2
    2
    ﹣4
    ﹣2


    由表可知,共有6种等可能结果,其中积为正数的有2种结果,
    所以积为正数的概率为,
    故选C.
    【点睛】本题考查了列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
    二、填空题
    15.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】若100个产品中有98个正品,2个次品,从中随机抽取一个,抽到次品的概率是_____.
    【答案】

    点睛:本题考查的是概率的公式,用满足条件的个数除以总个数可得出概率的值.
    16.【江苏省淮安市2018年中考数学试题】某射手在相同条件下进行射击训练,结果如下:
    射击次数n
    10
    20
    40
    50
    100
    200
    500
    1000
    击中靶心的频数m
    9
    19
    37
    45
    89
    181
    449
    901
    击中靶心的频率
    0.900
    0.950
    0.925
    0.900
    0.890
    0.905
    0.898
    0.901
    该射手击中靶心的概率的估计值是_____(精确到0.01).
    【答案】0.90
    【解析】分析:根据表格中实验的频率,然后根据频率即可估计概率.
    详解:由击中靶心频率都在0.90上下波动,
    所以该射手击中靶心的概率的估计值是0.90,
    故答案为:0.90.
    点睛:本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.
    17.【湖北省黄石市2018年中考数学试卷】在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为_____
    【答案】
    【解析】分析:列表或树状图得出所有等可能的情况数,找出数字之积大于9的情况数,利用概率公式即可得.
    详解:根据题意列表得:

    2
    3
    4
    5
    2
    ﹣﹣﹣
    (3,2)
    (4,2)
    (5,2)
    3
    (2,3)
    ﹣﹣﹣
    (4,3)
    (5,3)
    4
    (2,4)
    (3,4)
    ﹣﹣﹣
    (5,4)
    5
    (2,5)
    (3,5)
    (4,5)
    ﹣﹣﹣


    点睛:此题考查的是用列表法或树状图法求概率,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    18.【江苏省盐城市2018年中考数学试题】一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.

    【答案】

    点睛:此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.
    19.【四川省内江市2018年中考数学试卷】有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:
    ①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.
    将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是__________.
    【答案】
    【解析】分析:由五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的①⑤,直接利用概率公式求解即可求得答案.
    详解:∵五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的①⑤,
    ∴从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是:.
    故答案为:.
    点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与情况总数之比.
    20.【湖南省张家界市2018年初中毕业学业考试数学试题】在一不透明的袋子里装有个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸岀一个乒乓球,恰好是黄球的概率为,则袋子内共有乒乓球的个数为_____.
    【答案】10

    点睛:此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.
    21.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.
    【来源】新疆自治区2018年中考数学试题
    【答案】
    【解析】分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.
    详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;
    用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:

    Aa、Ab、Ba、Bb.
    所以颜色搭配正确的概率是.
    故答案为:.
    点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.



    22.下表记录了某种幼树在一定条件下移植成活情况
    移植总数n
    400
    1500
    3500
    7000
    9000
    14000
    成活数m
    325
    1336
    3203
    6335
    8073
    12628
    成活的频率(精确到0.01)
    0.813
    0.891
    0.915
    0.905
    0.897
    0.902
    由此估计这种幼树在此条件下移植成活的概率约是_____(精确到0.1)
    【来源】湖北省武汉市2018年中考数学试卷
    【答案】0.9.
    【解析】【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.

    【点睛】本题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
    23.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是__________.

    【来源】山东省聊城市2018年中考数学试卷
    【解析】分析: 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    详解: ∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,
    ∴P(红灯亮)=,
    故答案为:.
    点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    24.我市今年对九年级学生进行了物理、化学实验操作考试,其中物实验操作考试有4个考题备选,分别记为A,B,C,D,学生从中机抽取一个考题进行测试,如果每一个考题抽到的机会均等,那么学生小林抽到考题B的概率是_________.
    【来源】2018年湖南省湘潭市中考数学试卷
    【答案】

    点睛:此题考查了概率公式,概率=所求情况数与总情况数之比.
    25.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是_____.
    【来源】湖南省长沙市2018年中考数学试题
    【答案】
    【解析】分析:先统计出偶数点的个数,再根据概率公式解答.
    详解:正方体骰子共六个面,点数为1,2,3,4,5,6,偶数为2,4,6,
    故点数为偶数的概率为,
    故答案为:.
    点睛:此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    26.从,π,这三个数中选一个数,选出的这个数是无理数的概率为_____.
    【来源】上海市2018年中考数学试卷
    【答案】

    【点睛】本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.
    27.农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为_____.
    【来源】湖南省湘西州2018年中考数学试卷
    【答案】
    【解析】【分析】根据题意可知共有10个粽子,其中有5个腊肉粽,根据概率公式进行计算即可得.
    【详解】由题意可得,一共有10个粽子,其中有5全腊肉粽,
    所以,小明随意吃了一个,则吃到腊肉棕的概率为:,
    故答案为:.
    【点睛】本题考查概率公式,解答本题的关键是明确题意,利用概率的知识解答.
    28.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_____.
    【来源】山东省东营市2018年中考数学试题
    【答案】
    【解析】分析:直接利用中心对称图形的性质结合概率求法直接得出答案.
    详解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,
    ∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.
    故答案为:.
    点睛:此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.

    三、解答题
    29.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.
    (1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;
    (2)请你计算小悦拿到的两个粽子都是肉馅的概率.
    【来源】江苏省盐城市2018年中考数学试题
    【答案】(1)树状图见解析;(2)

    点睛:本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.
    30.一个箱子内有4颗相同的球,将4颗球分别标示号码1、2、3、4,今翔翔以每次从箱子内取一颗球且取后放回的方式抽取,并预计取球10次,现已取了8次,取出的结果如表所列:
    次数
    第1次
    第2次
    第3次
    第4次
    第5次
    第6次
    第7次
    第8次
    第9次
    第10次
    号码
    1
    3
    4
    4
    2
    1
    4
    1



    若每次取球时,任一颗球被取到的机会皆相等,且取出的号码即为得分,请回答下列问题:
    (1)请求出第1次至第8次得分的平均数.
    (2)承(1),翔翔打算依计划继续从箱子取球2次,请判断是否可能发生「这10次得分的平均数不小于2.2,且不大于2.4」的情形?若有可能,请计算出发生此情形的机率,并完整写出你的解题过程;若不可能,请完整说明你的理由.
    【来源】台湾省2018年中考数学试卷
    【答案】(1)第1次至第8次得分的平均数是2.5;(2)后两次的得分不小于2、不大于4的概率为.

    详解:(1)第1次至第8次得分的平均数=2.5;
    (2)∵这10次得分的平均数不小于2.2,且不大于2.4,
    ∴这10次得分之和不小于22、不大于24,
    而前8次的得分之和为20,
    ∴后两次的得分之和不小于2、不大于4,
    列表得:
    (1,4)
    (2,4)
    (3,4)
    (4,4)
    (1,3)
    (2,3)
    (3,3)
    (4,3)
    (1,2)
    (2,2)
    (3,2)
    (4,2)
    (1,1)
    (2,1)
    (3,1)
    (4,1)

    ∴一共有16种情况,其中得分之和不小于2、不大于4的有6种结果,
    这10次得分的平均数不小于2.2,且不大于2.4的概率为.
    点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    31.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:

    (1)a=   ,b=   ,c=   ;
    (2)扇形统计图中表示C等次的扇形所对的圆心角的度数为   度;
    (3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.
    【来源】湖北省恩施州2018年中考数学试题
    【答案】(1)2、45、20;(2)72;(3)

    详解:(1)本次调查的总人数为12÷30%=40人,
    ∴a=40×5%=2,b=×100=45,c=×100=20,
    (2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,
    (3)画树状图,如图所示:

    共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,
    故P(选中的两名同学恰好是甲、乙)=.
    点睛:此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.
    32.杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.

    请根据统计图解答下列问题:
    (1)本次调查中,杨老师一共调查了   名学生,其中C类女生有   名,D类男生有   名;
    (2)补全上面的条形统计图和扇形统计图;
    (3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.
    【来源】新疆自治区2018年中考数学试题
    【答案】(1)20、2、1;(2)补图见解析;(3)

    详解:(1)杨老师调查的学生总人数为(1+2)÷15%=20人,
    C类女生人数为20×25%-3=2人,D类男生人数为20×(1-15%-20%-25%)-1=1人,
    故答案为:20、2、1;
    (2)补全图形如下:

    (3)因为A类的3人中,女生有2人,
    所以所选的同学恰好是一位女同学的概率为.
    点睛:此题考查了概率公式的应用以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
    33.为了推进球类运动的发展,某校组织校内球类运动会,分篮球、足球、排球、羽毛球、乒乓球五项,要求每位学生必须参加一项并且只能参加一项,某班有一名学生根据自己了解的班内情况绘制了如图所示的不完整统计表和扇形统计图.

    请根据图表中提供的信息,解答下列问题:
    (1)图表中m=________,n=________;
    (2)若该校学生共有1000人,则该校参加羽毛球活动的人数约为________人;
    (3)该班参加乒乓球活动的4位同学中,有3位男同学(分别用A,B,C表示)和1位女同学(用D表示),现准备从中选出两名同学参加双打比赛,用树状图或列表法求出恰好选出一男一女的概率.
    【来源】四川省眉山市2018年中考数学试题
    【答案】(1)16;20;(2)150;(3).
    【解析】分析:(1)根据足球的人数和百分比,求出总人数即可解决问题;
    (2)利用样本估计总体的思想即可解决问题;
    (3)画出树状图,根据概率公式即可求解.

    (3)依题可得:
           
    ∴从4人中选出两名同学的所有情况有12种,而一男一女的情况有6种,
    则P(恰好选到一男一女)=.
    点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    34.校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:

    请你根据统计图回答下列问题:
    (1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图;
    (2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?
    (3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?
    (4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.
    【来源】湖南省常德市2018年中考数学试卷
    【答案】(1)28%,补图见解析;(2)60名;(3)144°;(4).

    【详解】(1)调查的总人数为8÷16%=50(人),
    喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),
    所以喜欢乒乓球的学生所占的百分比=×100%=28%,
    补全条形统计图如下:

    (2)500×12%=60,
    所以估计全校500名学生中最喜欢“排球”项目的有60名;
    (3),篮球”部分所对应的圆心角=360×40%=144°;
    (4)画树状图为:

    共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,
    所以抽取的两人恰好是甲和乙的概率=.
    【点睛】本题考查了扇形统计图、条形统计图,列表法与树状图法求概率,准确识图,从图中找到相关必要的信息是解题的关键.
    35.为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.
    (1)学生小红计划选修两门课程,请写出所有可能的选法;
    (2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?
    【来源】2018年湖南省湘潭市中考数学试卷
    【答案】(1)答案见解析;(2)

    详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.
    共有6种等可能的结果数;
    (2)画树状图为:

    共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,
    所以他们两人恰好选修同一门课程的概率
    点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    36.泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A、B两个景点中任意选择一个游玩,下午从C、D、E三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点B和C的概率.
    【来源】江苏省泰州市2018年中考数学试题
    【答案】画树状图见解析;小明恰好选中景点B和C的概率为.
    【解析】分析:通过列表展示所有6种等可能的结果数,找出小名恰好选中B和C这两处的结果数,然后根据概率公式求解.
    详解:列表如下:

    A
    B
    C
    AC
    BC
    D
    AD
    BD
    E
    AE
    BE

    由表可知共有6种等可能的结果数,其中小明恰好选中景点B和C的结果有1种,
    所以小明恰好选中景点B和C的概率为.
    点睛:此题主要考查了列表法与树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    37.如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)
    (1)转动转盘一次,求转出的数字是-2的概率;
    (2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.

    【来源】陕西省2018年中考数学试题
    【答案】(1);(2).

    【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,
    所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,
    ∴转动转盘一次,求转出的数字是-2的概率为=;
    (2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:
    第一次 第二次
    1
    -2
    3
    1
    (1,1)
    (1,-2)
    (1,3)
    -2
    (-2,1)
    (-2,-2)
    (-2,3)
    3
    (3,1)
    (3,-2)
    (3,3)

    由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.
    【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
    38.为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩用下面的折线统计图表示:(甲为实线,乙为虚线)

    (1)依据折线统计图,得到下面的表格:


    射击次序(次)
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    甲的成绩(环)
    8
    9
    7
    9
    8
    6
    7

    10
    8
    乙的成绩(环)
    6
    7
    9
    7
    9
    10
    8
    7

    10

    其中________,________;
    (2)甲成绩的众数是________环,乙成绩的中位数是________环;
    (3)请运用方差的知识,判断甲、乙两人谁的成绩更为稳定?
    (4)该校射击队要参加市组织的射击比赛,已预选出2名男同学和2名女同学,现要从这4名同学中任意选取2名同学参加比赛,请用列表或画树状图法,求出恰好选到1男1女的概率.
    【来源】山东省菏泽市2018年中考数学试题
    【答案】(1)8、7;(2)8,7;(3)甲成绩更稳定;(4)

    详解:(1)由折线统计图知a=8、b=7,
    故答案为:8、7;
    (2)甲射击成绩次数最多的是8环、乙射击成绩次数最多的是7环,
    甲成绩的众数是8环、乙成绩的众数为7环;
    (3)甲成绩的平均数为=8(环),
    所以甲成绩的方差为×[(6-8)2+2×(7-8)2+4×(8-8)2+2×(9-8)2+(10-8)2]=1.2(环2),
    乙成绩的平均数为=8(环),
    所以乙成绩的方差为×[(6-8)2+4×(7-8)2+(8-8)2+2×(9-8)2+2×(10-8)2]=1.8(环2),
    故甲成绩更稳定;
    (4)用A、B表示男生,用a、b表示女生,列表得:

     
    A
    B
    a
    b
    A
     
    AB
    Aa
    Ab
    B
    BA
     
    Ba
    Bb
    a
    aA
    aB
     
    ab
    b
    bA
    bB
    ba
     

    ∵共有12种等可能的结果,其中一男一女的有8种情况,
    ∴恰好选到1男1女的概率为.
    点睛:本题考查了折线统计图、众数以及中位数,方差等的计算,概率的计算等,解题的关键是牢记概念及公式.
    39.一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.
    (1)用画树状图或列表等方法列出所有可能出现的结果;
    (2)求点A落在第四象限的概率.
    【来源】江苏省淮安市2018年中考数学试题
    【答案】(1)见解析;(2)点A落在第四象限的概率为.
    【解析】分析:(1)首先根据题意列出表格,然后根据表格即可求得点A的坐标的所有可能的结果;
    (2)从表格中找到点A落在第四象限的结果数,利用概率公式计算可得.
    详解:(1)列表得:

    1
    ﹣2
    3
    1

    (1,﹣2)
    (1,3)
    2
    (﹣2,1)

    (﹣2,3)
    3
    (3,1)
    (3,﹣2)


    (2)由表可知,共有6种等可能结果,其中点A落在第四象限的有2种结果,
    所以点A落在第四象限的概率为.
    点睛:此题考查了列表法或树状图法求概率的知识.此题难度不大,注意列表法或树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
    40.某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)
    【来源】江苏省无锡市2018年中考数学试题
    【答案】恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为.

    详解:设男同学标记为A、B;女学生标记为1、2,可能出现的所有结果列表如下:






    /
    (乙,甲)
    (丙,甲)
    (丁,甲)

    (甲,乙)
    /
    (丙,乙)
    (丁,乙)

    (甲,丙)
    (乙,丙)
    /
    (丁,丙)

    (甲,丁)
    (乙,丁)
    (丙,丁)
    /

    共有12种可能的结果,且每种的可能性相同,其中恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的结果有2种,
    所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为.
    点睛:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
    41.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
    (1)这次活动共调查了   人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为   ;
    (2)将条形统计图补充完整.观察此图,支付方式的“众数”是“   ”;
    (3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

    【来源】山东省烟台市2018年中考数学试卷
    【答案】(1)200、81°;(2)补图见解析;(3)

    详解:(1)本次活动调查的总人数为(45+50+15)÷(1﹣15%﹣30%)=200人,
    则表示“支付宝”支付的扇形圆心角的度数为360°×=81°,
    故答案为:200、81°;
    (2)微信人数为200×30%=60人,银行卡人数为200×15%=30人,
    补全图形如下:

    由条形图知,支付方式的“众数”是“微信”,
    故答案为:微信;

    点睛:此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
    42.为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,己知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:
    (1)图中a的值为   ;
    (2)若要绘制该样本的扇形统计图,则成绩x在“70≤x<80”所对应扇形的圆心角度数为   度;
    (3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀“的学生大约有   人:
    (4)在这些抽查的样本中,小明的成绩为92分,若从成绩在“50≤x<60”和“90≤x<100”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.

    【来源】湖北省随州市2018年中考数学试卷
    【答案】(1)6;(2)144;(3)100;(4)小明被选中的概率为.

    【详解】(1)a=30﹣(2+12+8+2)=6,
    故答案为:6;
    (2)成绩x在“70≤x<80”所对应扇形的圆心角度数为360°×=144°,
    故答案为:144;
    (3)获得“优秀“的学生大约有300×=100人,
    故答案为:100;
    (4)50≤x<60的两名同学用A、B表示,90≤x<100的两名同学用C、D表示(小明用C表示),
    画树状图为:

    共有12种等可能的结果数,其中有C的结果数为6,
    所以小明被选中的概率为.
    【点睛】本题考查了频数分布直方图,扇形统计图、用样本估计总体、列表法或树状图法求概率,弄清题意,读懂直方图,熟记用列表法或树状图法求概率的方法是解题的关键.
    43.“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周的读书时间,统计数据如下表:
    时间(小时)
    6
    7
    8
    9
    10
    人数
    5
    8
    12
    15
    10

    (1)写出这50名学生读书时间的众数、中位数、平均数;
    (2)根据上述表格补全下面的条形统计图.
    (3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书活动,其中被抽到学生的读书时间不少于9小时的概率是多少?

    【来源】山东省淄博市2018年中考数学试题
    【答案】(1)众数是9;中位数是8.5;平均数是8.34;(2)补图见解析;(3)

    详解:(1)观察表格,可知这组样本数据的平均数为:
    (6×5+7×8+8×12+9×15+10×10)÷50=8.34,
    故这组样本数据的平均数为8.34;
    ∵这组样本数据中,9出现了15次,出现的次数最多,
    ∴这组数据的众数是9;
    ∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数是8和9,
    ∴这组数据的中位数为(8+9)=8.5;
    (2)补全图形如图所示,


    点睛:本题考查了加权平均数、众数以及中位数,用样本估计总体的知识,解题的关键是牢记概念及公式.
    44.为调查达州市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项.将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.

    (1)本次调查中,一共调查了   名市民;扇形统计图中,B项对应的扇形圆心角是   度;补全条形统计图;
    (2)若甲、乙两人上班时从A,B,C,D四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.
    【来源】四川省达州市2018年中考数学试题
    【答案】(1)2000、54;补图见解析;(2)
    【解析】分析:(1)根据D组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;

    详解:(1)本次调查的总人数为500÷25%=2000人,扇形统计图中,B项对应的扇形圆心角是360°×=54°,
    C选项的人数为2000-(100+300+500+300)=800,
    补全条形图如下:

    (2)列表如下:

    A
    B
    C
    D
    A
    (A,A)
    (B,A)
    (C,A)
    (D,A)
    B
    (A,B)
    (B,B)
    (C,B)
    (D,B)
    C
    (A,C)
    (B,C)
    (C,C)
    (D,C)
    D
    (A,D)
    (B,D)
    (C,D)
    (D,D)

    由表可知共有16种等可能结果,其中甲、乙两人恰好选择同一种交通工具上班的结果有4种,
    所以甲、乙两人恰好选择同一种交通工具上班的概率为.
    点睛:此题考查了条形统计图、扇形统计图和概率公式的运用,解题的关键是仔细观察统计图并从中整理出进一步解题的有关信息,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    45.文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经曲咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经曲咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.

    请根据图中信息解答下列问题:
    (1)在这项调查中,共调查了多少名学生?
    (2)将条形统计图补充完整,并求出扇形统计图中“B”所在扇形圆心角的度数;
    (3)若选择“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.
    【来源】湖北省荆门市2018年中考数学试卷
    【答案】(1)共调查了150名学生;(2)补图见解析;扇形统计图中“B”所在扇形圆心角的度数为36°;(3).

    【详解】(1)30÷20%=150(人),
    ∴共调查了150名学生.
    (2)D:50%×150=75(人),B:150﹣30﹣75﹣24﹣6=15(人)
    补全条形图如图所示.

    扇形统计图中“B”所在扇形圆心角的度数为×360°=36°;
    (3)记选择“E”的同学中的2名女生分别为N1,N2,4名男生分别为M1,M2,M3,M4,
    列表如下:

    N1
    N2
    M1
    M2
    M3
    M4
    N1

    (N1,N2)
    (N1,M1)
    (N1,M2)
    (N1,M3)
    (N1,M4)
    N2
    (N2,N1)

    (N2,M1)
    (N2,M2)
    (N2,M3)
    (N2,M4)
    M1
    (M1,N1)
    (M1,N2)

    (M1,M2)
    (M1,M3)
    (M1,M4)
    M2
    (M2,N1)
    (M2,N2)
    (M2,M1)

    (M2,M3)
    (M2,M4)
    M3
    (M3,N1)
    (M3,N2)
    (M3,M1)
    (M3,M2)

    (M3,M4)
    M4
    (M4,N1)
    (M4,N2)
    (M4,M1)
    (M4,M2)
    (M4,M3)


    ∵共有30种等可能的结果,其中,恰好是同性别学生(记为事件F)的有14种情况,
    ∴P(F)=.
    【点睛】本题考查了条形图、扇形图、列表法或树状图法求概率,读懂统计图,从统计图中获取必要的解题信息是解题的关键.
    46.在孝感市关工委组织的“五好小公民”主题教育活动中,我市蓝天学校组织全校学生参加了“红旗飘飘,引我成长”知识竞赛,赛后随机抽取了部分参赛学生的成绩,按从高分到低分将成绩分成,,,,五类,绘制成下面两个不完整的统计图:

    根据上面提供的信息解答下列问题:
    (1)类所对应的圆心角是________度,样本中成绩的中位数落在________类中,并补全条形统计图;
    (2)若类含有2名男生和2名女生,随机选择2名学生担任校园广播“孝心伴我行”节目主持人,请用列表法或画树状图求恰好抽到1名男生和1名女生的概率.
    【来源】湖北省孝感市2018年中考数学试题
    【答案】(1)72,,补图见解析;(2)

    详解:(1)∵被调查的总人数为30÷30%=100人,
    则B类别人数为100×40%=40人,
    所以D类别人数为100-(4+40+30+6)=20人,
    则D类所对应的圆心角是360°×=72°,
    中位数是第50、51个数据的平均数,而第50、51个数据均落在C类,
    所以中位数落在C类,
    补全条形图如下:

    (2)列表为:

    男1
    男2
    女1
    女2
    男1
    --
    男2男1
    女1男1
    女2男1
    男2
    男1男2
    --
    女1男2
    女2男2
    女1
    男1女1
    男2女1
    --
    女2女1
    女2
    男1女2
    男2女2
    女1女2
    --


    点睛:此题考查了扇形统计图、条形统计图和列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
    相关试卷

    【专项练习】中考数学试题分专题训练 专题6.3 概率(第03期)(教师版含解析): 这是一份【专项练习】中考数学试题分专题训练 专题6.3 概率(第03期)(教师版含解析),共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    【专项练习】中考数学试题分专题训练 专题2.1 方程(第03期)(教师版含解析): 这是一份【专项练习】中考数学试题分专题训练 专题2.1 方程(第03期)(教师版含解析),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    【专项练习】中考数学试题分专题训练 专题4.4 圆(第02期)(教师版含解析): 这是一份【专项练习】中考数学试题分专题训练 专题4.4 圆(第02期)(教师版含解析),共58页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【专项练习】中考数学试题分专题训练 专题6.3 概率(第02期)(教师版含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map