终身会员
搜索
    上传资料 赚现金
    2020年中考数学真题分项汇编专题07不等式(组) (含解析)
    立即下载
    加入资料篮
    2020年中考数学真题分项汇编专题07不等式(组) (含解析)01
    2020年中考数学真题分项汇编专题07不等式(组) (含解析)02
    2020年中考数学真题分项汇编专题07不等式(组) (含解析)03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020年中考数学真题分项汇编专题07不等式(组) (含解析)

    展开
    这是一份2020年中考数学真题分项汇编专题07不等式(组) (含解析),共23页。

    专题7不等式(组)
    一.选择题(共14小题)
    1.(2020•贵阳)已知a<b,下列式子不一定成立的是(  )
    A.a﹣1<b﹣1 B.﹣2a>﹣2b
    C.a+1b+1 D.ma>mb
    【分析】根据不等式的基本性质进行判断.
    【解析】A、在不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,原变形正确,故此选项不符合题意;
    B、在不等式a<b的两边同时乘以﹣2,不等号方向改变,即﹣2a>﹣2b,原变形正确,故此选项不符合题意;
    C、在不等式a<b的两边同时乘以,不等号的方向不变,即ab,不等式ab的两边同时加上1,不等号的方向不变,即a+1b+1,原变形正确,故此选项不符合题意;
    D、在不等式a<b的两边同时乘以m,不等式不一定成立,即ma>mb,或ma<mb,或ma=mb,原变形不正确,故此选项符合题意.
    故选:D.
    2.(2020•衢州)不等式组的解集在数轴上表示正确的是(  )
    A.
    B.
    C.
    D.
    【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集,再在数轴上表示出来即可求解.
    【解析】,
    由①得x≤1;
    由②得x>﹣1;
    故不等式组的解集为﹣1<x≤1,
    在数轴上表示出来为:.
    故选:C.
    3.(2020•嘉兴)不等式3(1﹣x)>2﹣4x的解在数轴上表示正确的是(  )
    A. B.
    C. D.
    【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式的解集,继而可得答案.
    【解析】去括号,得:3﹣3x>2﹣4x,
    移项,得:﹣3x+4x>2﹣3,
    合并,得:x>﹣1,
    故选:A.
    4.(2020•苏州)不等式2x﹣1≤3的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    【分析】先求出不等式的解集,再在数轴上表示出来即可.
    【解析】移项得,2x≤3+1,
    合并同类项得,2x≤4,
    x的系数化为1得,x≤2.
    在数轴上表示为:

    故选:C.
    5.(2020•连云港)不等式组的解集在数轴上表示为(  )
    A. B.
    C. D.
    【分析】先求出不等式组的解集,再在数轴上表示出来即可.
    【解析】解不等式2x﹣1≤3,得:x≤2,
    解不等式x+1>2,得:x>1,
    ∴不等式组的解集为1<x≤2,
    表示在数轴上如下:

    故选:C.
    6.(2020•株洲)下列哪个数是不等式2(x﹣1)+3<0的一个解?(  )
    A.﹣3 B. C. D.2
    【分析】首先求出不等式的解集,然后判断哪个数在其解集范围之内即可.
    【解析】解不等式2(x﹣1)+3<0,得,
    因为只有﹣3,所以只有﹣3是不等式2(x﹣1)+3<0的一个解,
    故选:A.
    7.(2020•衡阳)不等式组的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    【分析】分别求出①②的解集,再找到其公共部分,在数轴上表示出来即可求解.
    【解析】,
    由①得x≤1,
    由②得x>﹣2,
    故不等式组的解集为﹣2<x≤1,
    在数轴上表示为:.
    故选:C.
    8.(2020•株洲)在平面直角坐标系中,点A(a,2)在第二象限内,则a的取值可以是(  )
    A.1 B. C. D.4或﹣4
    【分析】根据第二象限内点的坐标特点列出关于a的不等式,求出a的取值范围即可.
    【解析】∵点A(a,2)是第二象限内的点,
    ∴a<0,
    四个选项中符合题意的数是,
    故选:B.
    9.(2020•广元)关于x的不等式的整数解只有4个,则m的取值范围是(  )
    A.﹣2<m≤﹣1 B.﹣2≤m≤﹣1 C.﹣2≤m<﹣1 D.﹣3<m≤﹣2
    【分析】先求出每个不等式的解集,根据已知不等式组的整数解得出关于m的不等式组,求出不等式组的解集即可.
    【解析】不等式组整理得:,
    解集为m<x<3,
    由不等式组的整数解只有4个,得到整数解为2,1,0,﹣1,
    ∴﹣2≤m<﹣1,
    故选:C.
    10.(2020•天水)若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为(  )
    A.﹣7<a<﹣4 B.﹣7≤a≤﹣4 C.﹣7≤a<﹣4 D.﹣7<a≤﹣4
    【分析】先解不等式得出x,根据不等式只有2个正整数解知其正整数解为1和2,据此得出23,解之可得答案.
    【解析】∵3x+a≤2,
    ∴3x≤2﹣a,
    则x,
    ∵不等式只有2个正整数解,
    ∴不等式的正整数解为1、2,
    则23,
    解得:﹣7<a≤﹣4,
    故选:D.
    11.(2020•广东)不等式组的解集为(  )
    A.无解 B.x≤1 C.x≥﹣1 D.﹣1≤x≤1
    【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解析】解不等式2﹣3x≥﹣1,得:x≤1,
    解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,
    则不等式组的解集为﹣1≤x≤1,
    故选:D.
    12.(2020•重庆)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为(  )
    A.5 B.4 C.3 D.2
    【分析】设还可以买x个作业本,根据总价=单价×数量结合总价不超过40元,即可得出关系x的一元一次不等式,解之取其中的最大整数值即可得出结论.
    【解析】设还可以买x个作业本,
    依题意,得:2.2×7+6x≤40,
    解得:x≤4.
    又∵x为正整数,
    ∴x的最大值为4.
    故选:B.
    13.(2020•杭州)若a>b,则(  )
    A.a﹣1≥b B.b+1≥a C.a+1>b﹣1 D.a﹣1>b+1
    【分析】举出反例即可判断A、B、D,根据不等式的传递性即可判断C.
    【解析】A、设a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;
    B、设a=3,b=1,a>b,但是b+1<a,不符合题意;
    C、∵a>b,∴a+1>b+1,∵b+1>b﹣1,∴a+1>b﹣1,符合题意;
    D、设a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.
    故选:C.
    14.(2020•新疆)不等式组的解集是(  )
    A.0<x≤2 B.0<x≤6 C.x>0 D.x≤2
    【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解析】,
    解不等式①,得:x≤2,
    解不等式②,得:x>0,
    则不等式组的解集为0<x≤2,
    故选:A.
    二.填空题(共13小题)
    15.(2020•鄂州)关于x的不等式组的解集是 2<x≤5 .
    【分析】先求出其中各不等式的解集,再求出这些解集的公共部分.
    【解析】
    由①得:x>2,
    由②得:x≤5,
    所以不等式组的解集为:2<x≤5,
    故答案为2<x≤5.
    16.(2020•攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有 33 人进公园,买40张门票反而合算.
    【分析】先求出购买40张票,优惠后需要多少钱,然后再利用5x>160时,求出买到的张数的取值范围再加上1即可.
    【解析】设x人进公园,
    若购满40张票则需要:40×(5﹣1)=40×4=160(元),
    故5x>160时,
    解得:x>32,
    则当有32人时,购买32张票和40张票的价格相同,
    则再多1人时买40张票较合算;
    32+1=33(人).
    则至少要有33人去世纪公园,买40张票反而合算.
    故答案为:33.
    17.(2020•岳阳)不等式组的解集是 ﹣3≤x<1 .
    【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解析】解不等式x+3≥0,得:x≥﹣3,
    解不等式x﹣1<0,得:x<1,
    则不等式组的解集为﹣3≤x<11,
    故答案为:﹣3≤x<1.
    18.(2020•黑龙江)若关于x的一元一次不等式组有2个整数解,则a的取值范围是 6<a≤8 .
    【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再结合不等式组的整数解的个数得出关于a的不等式组,解之可得答案.
    【解析】解不等式x﹣1>0,得:x>1,
    解不等式2x﹣a<0,得:x,
    则不等式组的解集为1<x,
    ∵不等式组有2个整数解,
    ∴不等式组的整数解为2、3,
    则34,
    解得6<a≤8,
    故答案为:6<a≤8.
    19.(2020•凉山州)若不等式组恰有四个整数解,则a的取值范围是 a .
    【分析】分别求出每一个不等式的解集,根据不等式组有4个整数解可得关于a的不等式组,解不等式组可得a的范围.
    【解析】解不等式2x<3(x﹣3)+1,得:x>8,
    解不等式x+a,得:x<2﹣4a,
    ∵不等式组有4个整数解,
    ∴12<2﹣4a≤13,
    解得:a,
    故答案为:a.
    20.(2020•河南)已知关于x的不等式组其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为 x>a .

    【分析】根据关于x的不等式组的解集表示在数轴上表示方法求出x的取值范围即可.
    【解析】∵b<0<a,
    ∴关于x的不等式组的解集为:x>a,
    故答案为:x>a.
    21.(2020•滨州)若关于x的不等式组无解,则a的取值范围为 a≥1 .
    【分析】分别求出每一个不等式的解集,根据口诀:大大小小无解了可得答案.
    【解析】解不等式x﹣a>0,得:x>2a,
    解不等式4﹣2x≥0,得:x≤2,
    ∵不等式组无解,
    ∴2a≥2,
    解得a≥1,
    故答案为:a≥1.
    22.(2020•黑龙江)若关于x的一元一次不等式组的解是x>1,则a的取值范围是 a≤2 .
    【分析】分别求出每一个不等式的解集,根据口诀:同大取大可得答案.
    【解析】解不等式x﹣1>0,得:x>1,
    解不等式2x﹣a>0,得:x,
    ∵不等式组的解集为x>1,
    ∴1,
    解得a≤2,
    故答案为:a≤2.
    23.(2020•哈尔滨)不等式组的解集是 x≤﹣3 .
    【分析】分别求出各不等式的解集,再求出其公共解集即可.
    【解析】,
    由①得,x≤﹣3;
    由②得,x<﹣1,
    故此不等式组的解集为:x≤﹣3.
    故答案为:x≤﹣3.
    24.(2020•黔东南州)不等式组的解集为 2<x≤6 .
    【分析】先根据解不等式的基本步骤求出每个不等式的解集,再根据“大小小大中间找”可确定不等式组的解集.
    【解析】解不等式5x﹣1>3(x+1),得:x>2,
    解不等式x﹣1≤4x,得:x≤6,
    则不等式组的解集为2<x≤6,
    故答案为:2<x≤6.
    25.(2020•遂宁)若关于x的不等式组有且只有三个整数解,则m的取值范围是 1≤m<4 .
    【分析】解不等式组得出其解集为﹣2<x,根据不等式组有且只有三个整数解得出12,解之可得答案.
    【解析】解不等式,得:x>﹣2,
    解不等式2x﹣m≤2﹣x,得:x,
    则不等式组的解集为﹣2<x,
    ∵不等式组有且只有三个整数解,
    ∴12,
    解得1≤m<4,
    故答案为:1≤m<4.
    26.(2020•温州)不等式组的解集为 ﹣2≤x<3 .
    【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.
    【解析】,
    解①得x<3;
    解②得x≥﹣2.
    故不等式组的解集为﹣2≤x<3.
    故答案为:﹣2≤x<3.
    27.(2020•黔西南州)不等式组的解集为 ﹣6<x≤13 .
    【分析】首先分别计算出两个不等式的解集,再确定不等式组的解集即可.
    【解析】,
    解①得:x>﹣6,
    解②得:x≤13,
    不等式组的解集为:﹣6<x≤13,
    故答案为:﹣6<x≤13.
    三.解答题(共23小题)
    28.(2020•福建)解不等式组:
    【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解析】解不等式①,得:x≤2,
    解不等式②,得:x>﹣3,
    则不等式组的解集为﹣3<x≤2.
    29.(2020•武威)解不等式组:,并把它的解集在数轴上表示出来.

    【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解析】解不等式3x﹣5<x+1,得:x<3,
    解不等式2(2x﹣1)≥3x﹣4,得:x≥﹣2,
    则不等式组的解集为﹣2≤x<3,
    将不等式组的解集表示在数轴上如下:

    30.(2020•河北)已知两个有理数:﹣9和5.
    (1)计算:;
    (2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.
    【分析】(1)根据有理数的加法、除法法则计算即可;
    (2)根据题意列不等式,解不等式,由m是负整数即可求出m的值.
    【解析】(1)2;
    (2)根据题意得,
    m,
    ∴﹣4+m<3m,
    ∴m﹣3m<4,
    ∴﹣2m<4,
    ∴m>﹣2,
    ∵m是负整数,
    ∴m=﹣1.
    31.(2020•咸宁)(1)计算:|1|﹣2sin45°+(﹣2020)0;
    (2)解不等式组:
    【分析】(1)先去绝对值符号、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;
    (2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解析】(1)原式1﹣21
    11
    =0;
    (2)解不等式﹣(x﹣1)>3,得:x<﹣2,
    解不等式2x+9>3,得:x>﹣3,
    则不等式组的解集为﹣3<x<﹣2.
    32.(2020•陕西)解不等式组:
    【分析】分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.
    【解析】,
    由①得:x>2,
    由②得:x<3,
    则不等式组的解集为2<x<3.
    33.(2020•上海)解不等式组:
    【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.
    【解析】,
    解不等式①得x>2,
    解不等式②得x<5.
    故原不等式组的解集是2<x<5.
    34.(2020•北京)解不等式组:
    【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解析】解不等式5x﹣3>2x,得:x>1,
    解不等式,得:x<2,
    则不等式组的解集为1<x<2.
    35.(2020•扬州)解不等式组并写出它的最大负整数解.
    【分析】分别求出每一个不等式的解集,根据口诀:同小取小确定不等式组的解集,从而得出答案.
    【解析】解不等式x+5≤0,得x≤﹣5,
    解不等式2x+1,得:x≤﹣3,
    则不等式组的解集为x≤﹣5,
    所以不等式组的最大负整数解为﹣5.
    36.(2020•江西)(1)计算:(1)0﹣|﹣2|+()﹣2;
    (2)解不等式组:
    【分析】(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得;
    (2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解析】(1)原式=1﹣2+4=3;
    (2)解不等式3x﹣2≥1,得:x≥1,
    解不等式5﹣x>2,得:x<3,
    则不等式组的解集为1≤x<3.
    37.(2020•淮安)解不等式2x﹣1.
    解:去分母,得2(2x﹣1)>3x﹣1.

    (1)请完成上述解不等式的余下步骤:
    (2)解题回顾:本题“去分母”这一步的变形依据是 A (填“A”或“B”).
    A.不等式两边都乘(或除以)同一个正数,不等号的方向不变;
    B.不等式两边都乘(或除以)同一个负数,不等号的方向改变.
    【分析】(1)根据不等式的基本性质去分母、去括号、移项可得不等式的解集;
    (2)不等式两边都乘(或除以)同一个正数,不等号的方向不变.
    【解析】(1)去分母,得:4x﹣2>3x﹣1,
    移项,得:4x﹣3x>2﹣1,
    合并同类项,得:x>1,
    (2)本题“去分母”这一步的变形依据是:不等式两边都乘(或除以)同一个正数,不等号的方向不变;
    故答案为A.
    38.(2020•泰州)(1)计算:(﹣π)0+()﹣1sin60°;
    (2)解不等式组:
    【分析】(1)先计算零指数幂、负整数指数幂、代入三角函数值,再计算乘法,最后计算加减可得;
    (2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解析】(1)原式=1+2
    =1+2


    (2)解不等式3x﹣1≥x+1,得:x≥1,
    解不等式x+4<4x﹣2,得:x>2,
    则不等式组的解集为x>2.
    39.(2020•枣庄)解不等式组并求它的所有整数解的和.
    【分析】先求出两个不等式的解集,再求其公共解,然后找出整数求和即可.
    【解析】,
    由①得,x≥﹣3,
    由②得,x<2,
    所以,不等式组的解集是﹣3≤x<2,
    所以,它的整数解为:﹣3,﹣2,﹣1,0,1,
    所以,所有整数解的和为﹣5.
    40.(2020•安徽)解不等式:1.
    【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.
    【解析】去分母,得:2x﹣1>2,
    移项,得:2x>2+1,
    合并,得:2x>3,
    系数化为1,得:x.
    41.(2020•甘孜州)(1)计算:4sin60°+(2020﹣π)0.
    (2)解不等式组:
    【分析】(1)先计算二次根式、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;
    (2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解析】(1)原式=241
    =221
    =1;
    (2)解不等式x+2>﹣1,得:x>﹣3,
    解不等式3,得:x≤5,
    则不等式组的解集为﹣3<x≤5.
    42.(2020•黑龙江)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.
    (1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.
    (2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克,求有哪几种购买方案.
    (3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.
    【分析】(1)根据“该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元”,即可得出关于m,n的二元一次方程组,解之即可得出结论;
    (2)设购买甲种蔬菜x千克,则购买乙种蔬菜(100﹣x)千克,根据总价=单价×数量结合投入资金不少于1160元又不多于1168元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出各购买方案;
    (3)设超市获得的利润为y元,根据总利润=每千克的利润×销售数量可得出y关于x的函数关系式,利用一次函数的性质可得出获得利润最多的方案,由总利润=每千克的利润×销售数量结合捐款后的利润率不低于20%,即可得出关于a的一元一次不等式,解之取其最大值即可得出结论.
    【解析】(1)依题意,得:,
    解得:.
    答:m的值为10,n的值为14.
    (2)设购买甲种蔬菜x千克,则购买乙种蔬菜(100﹣x)千克,
    依题意,得:,
    解得:58≤x≤60.
    ∵x为正整数,
    ∴x=58,59,60,
    ∴有3种购买方案,方案1:购买甲种蔬菜58千克,乙种蔬菜42千克;方案2:购买甲种蔬菜59千克,乙种蔬菜41千克;方案3:购买甲种蔬菜60千克,乙种蔬菜40千克.
    (3)设超市获得的利润为y元,则y=(16﹣10)x+(18﹣14)(100﹣x)=2x+400.
    ∵k=2>0,
    ∴y随x的增大而增大,
    ∴当x=60时,y取得最大值,最大值为2×60+400=520.
    依题意,得:(16﹣10﹣2a)×60+(18﹣14﹣a)×40≥(10×60+14×40)×20%,
    解得:a≤1.8.
    答:a的最大值为1.8.
    43.(2020•哈尔滨)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.
    (1)求每个大地球仪和每个小地球仪各多少元;
    (2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?
    【分析】(1)设每个大地球仪x元,每个小地球仪y元,根据条件建立方程组求出其解即可;
    (2)设大地球仪为a台,则每个小地球仪为(30﹣a)台,根据要求购买的总费用不超过960元,列出不等式解答即可.
    【解析】(1)设每个大地球仪x元,每个小地球仪y元,根据题意可得:

    解得:,
    答:每个大地球仪52元,每个小地球仪28元;

    (2)设大地球仪为a台,则每个小地球仪为(30﹣a)台,根据题意可得:
    52a+28(30﹣a)≤960,
    解得:a≤5,
    答:最多可以购买5个大地球仪.
    44.(2020•苏州)如图,“开心”农场准备用50m的护栏围成一块靠墙的矩形花园,设矩形花园的长为a(m),宽为b(m).
    (1)当a=20时,求b的值;
    (2)受场地条件的限制,a的取值范围为18≤a≤26,求b的取值范围.

    【分析】(1)由护栏的总长度为50m,可得出关于b的一元一次方程,解之即可得出结论;
    (2)由a的取值范围结合a=50﹣2b,即可得出关于b的一元一次不等式,解之即可得出结论.
    【解析】(1)依题意,得:20+2b=50,
    解得:b=15.
    (2)∵18≤a≤26,a=50﹣2b,
    ∴,
    解得:12≤b≤16.
    答:b的取值范围为12≤b≤16.
    45.(2020•辽阳)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.
    (1)求每本甲种词典和每本乙种词典的价格分别为多少元?
    (2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?
    【分析】(1)设每本甲种词典的价格为x元,每本乙种词典的价格为y元,根据“购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
    (2)设学校购买甲种词典m本,则购买乙种词典(30﹣m)本,根据总价=单价×数量结合总费用不超过1600元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
    【解析】(1)设每本甲种词典的价格为x元,每本乙种词典的价格为y元,
    依题意,得:,
    解得:.
    答:每本甲种词典的价格为70元,每本乙种词典的价格为50元.
    (2)设学校购买甲种词典m本,则购买乙种词典(30﹣m)本,
    依题意,得:70m+50(30﹣m)≤1600,
    解得:m≤5.
    答:学校最多可购买甲种词典5本.
    46.(2020•长沙)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:

    第一批
    第二批
    A型货车的辆数(单位:辆)
    1
    2
    B型货车的辆数(单位:辆)
    3
    5
    累计运输物资的吨数(单位:吨)
    28
    50
    备注:第一批、第二批每辆货车均满载
    (1)求A、B两种型号货车每辆满载分别能运多少吨生活物资?
    (2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车.试问至少还需联系多少辆B种型号货车才能一次性将这批生活物资运往目的地?
    【分析】(1)设A种型号货车每辆满载能运x吨生活物资,B种型号货车每辆满载能运y吨生活物资,根据前两批具体运算情况数据表,即可得出关于x,y的二元一次方程组,解之即可得出结论;
    (2)设还需联系m辆B种型号货车才能一次性将这批生活物资运往目的地,根据要求一次性运送62.4吨生活物资,即可得出关于m的一元一次不等式,解之取其中最小的整数值即可得出结论.
    【解析】(1)设A种型号货车每辆满载能运x吨生活物资,B种型号货车每辆满载能运y吨生活物资,
    依题意,得:,
    解得:.
    答:A种型号货车每辆满载能运10吨生活物资,B种型号货车每辆满载能运6吨生活物资.
    (2)设还需联系m辆B种型号货车才能一次性将这批生活物资运往目的地,
    依题意,得:10×3+6m≥62.4,
    解得:m≥5.4,
    又∵m为正整数,
    ∴m的最小值为6.
    答:至少还需联系6辆B种型号货车才能一次性将这批生活物资运往目的地.
    47.(2020•黑龙江)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.
    (1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求m,n的值.
    (2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为正整数),求有哪几种购买方案.
    (3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.
    【分析】(1)根据“购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元”,即可得出关于m,n的二元一次方程组,解之即可得出结论;
    (2)根据总价=单价×数量结合投入资金不少于1160元又不多于1168元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出各购买方案;
    (3)求出(2)中各购买方案的总利润,比较后可得出获得最大利润时售出甲、乙两种蔬菜的重量,再根据总利润=每千克利润×销售数量结合捐款后的利润率不低于20%,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论.
    【解析】(1)依题意,得:,
    解得:.
    答:m的值为10,n的值为14.
    (2)依题意,得:,
    解得:58≤x≤60.
    又∵x为正整数,
    ∴x可以为58,59,60,
    ∴共有3种购买方案,方案1:购进58千克甲种蔬菜,42千克乙种蔬菜;方案2:购进59千克甲种蔬菜,41千克乙种蔬菜;方案3:购进60千克甲种蔬菜,40千克乙种蔬菜.
    (3)购买方案1的总利润为(16﹣10)×58+(18﹣14)×42=516(元);
    购买方案2的总利润为(16﹣10)×59+(18﹣14)×41=518(元);
    购买方案3的总利润为(16﹣10)×60+(18﹣14)×40=520(元).
    ∵516<518<520,
    ∴利润最大值为520元,即售出甲种蔬菜60千克,乙种蔬菜40千克.
    依题意,得:(16﹣10﹣2a)×60+(18﹣14﹣a)×40≥(10×60+14×40)×20%,
    解得:a.
    答:a的最大值为.
    48.(2020•菏泽)今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.
    (1)求购买一根跳绳和一个毽子分别需要多少元?
    (2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.
    【分析】(1)设购买一根跳绳需要x元,购买一个毽子需要y元,根据“购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
    (2)设购买m根跳绳,则购买(54﹣m)个毽子,根据购买的总费用不能超过260元且购买跳绳的数量多于20根,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为正整数即可得出各购买方案.
    【解析】(1)设购买一根跳绳需要x元,购买一个毽子需要y元,
    依题意,得:,
    解得:.
    答:购买一根跳绳需要6元,购买一个毽子需要4元.
    (2)设购买m根跳绳,则购买(54﹣m)个毽子,
    依题意,得:,
    解得:20<m≤22.
    又∵m为正整数,
    ∴m可以为21,22.
    ∴共有2种购买方案,方案1:购买21根跳绳,33个毽子;方案2:购买22根跳绳,32个毽子.
    49.(2020•济宁)为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.
    (1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;
    (2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?
    【分析】(1)设1辆大货车一次运输x箱物资,1辆小货车一次运输y箱物资,由“2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱”,可列方程组,即可求解;
    (2)设有a辆大货车,(12﹣a)辆小货车,由“运输物资不少于1500箱,且总费用小于54000元”可列不等式组,可求整数a的值,即可求解.
    【解析】(1)设1辆大货车一次运输x箱物资,1辆小货车一次运输y箱物资,
    由题意可得:,
    解得:,
    答:1辆大货车一次运输150箱物资,1辆小货车一次运输100箱物资,
    (2)设有a辆大货车,(12﹣a)辆小货车,
    由题意可得:,
    ∴6≤a<9,
    ∴整数a=6,7,8;
    当有6辆大货车,6辆小货车时,费用=5000×6+3000×6=48000元,
    当有7辆大货车,5辆小货车时,费用=5000×7+3000×5=50000元,
    当有8辆大货车,4辆小货车时,费用=5000×8+3000×4=52000元,
    ∵48000<50000<52000,
    ∴当有6辆大货车,6辆小货车时,费用最小,最小费用为48000元.
    50.(2020•自贡)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离:因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.
    (1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?
    (2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.

    ∵|x+1|+|x﹣2|的几何意义是线段PA与PB的长度之和,
    ∴当点P在线段AB上时,PA+PB=3,当点P在点A的左侧或点B的右侧时,PA+PB>3.
    ∴|x+1|+|x﹣2|的最小值是3.
    (3)解决问题:
    ①|x﹣4|+|x+2|的最小值是 6 ;
    ②利用上述思想方法解不等式:|x+3|+|x﹣1|>4;

    ③当a为何值时,代数式|x+a|+|x﹣3|的最小值是2.
    【分析】观察阅读材料中的(1)和(2),总结出求最值方法;
    (3)①原式变形﹣2和4距离x最小值为4﹣(﹣2)=6;
    ②根据题意画出相应的图形,确定出所求不等式的解集即可;
    ③根据原式的最小值为2,得到3左边和右边,且到3距离为2的点即可.
    【解析】(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?
    (2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.

    ∵|x+1|+|x﹣2|的几何意义是线段PA与PB的长度之和,
    ∴当点P在线段AB上时,PA+PB=3,当点P在点A的左侧或点B的右侧时,PA+PB>3.
    ∴|x+1|+|x﹣2|的最小值是3.
    (3)解决问题:
    ①|x﹣4|+|x+2|的最小值是6;
    故答案为:6;
    ②如图所示,满足|x+3|+|x﹣1|>4的x范围为x<﹣3或x>1;

    ③当a为﹣1或﹣5时,代数式|x+a|+|x﹣3|的最小值是2.

    相关试卷

    专题05不等式与不等式组三年(2021-2023)中考数学真题分项汇编: 这是一份专题05不等式与不等式组三年(2021-2023)中考数学真题分项汇编,共60页。

    三年(2020年-2022年)中考数学真题分项汇编:专题07 不等式与不等式组(含答案详解): 这是一份三年(2020年-2022年)中考数学真题分项汇编:专题07 不等式与不等式组(含答案详解),共64页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题07 不等式与不等式组-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版): 这是一份初中数学中考复习 专题07 不等式与不等式组-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版),共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map