|课件下载
搜索
    上传资料 赚现金
    人教版数学必修3第三章3.1.3概率的基本性质课件(共22张PPT)
    立即下载
    加入资料篮
    人教版数学必修3第三章3.1.3概率的基本性质课件(共22张PPT)01
    人教版数学必修3第三章3.1.3概率的基本性质课件(共22张PPT)02
    人教版数学必修3第三章3.1.3概率的基本性质课件(共22张PPT)03
    人教版数学必修3第三章3.1.3概率的基本性质课件(共22张PPT)04
    人教版数学必修3第三章3.1.3概率的基本性质课件(共22张PPT)05
    人教版数学必修3第三章3.1.3概率的基本性质课件(共22张PPT)06
    人教版数学必修3第三章3.1.3概率的基本性质课件(共22张PPT)07
    人教版数学必修3第三章3.1.3概率的基本性质课件(共22张PPT)08
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学3.1.3概率的基本性质背景图ppt课件

    展开
    这是一份高中数学3.1.3概率的基本性质背景图ppt课件,共22页。PPT课件主要包含了〖教学情境设计〗,1包含关系,2相等关系,事件的关系和运算,5互斥事件,6互为对立事件,≤PA≤1,PA1,PA0等内容,欢迎下载使用。

    一、事件的关系和运算:
    一般地,对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作
    例.事件C1={出现1点}发生,则事件D1={出现的点数不大于1}就一定会发生,反过来也一样,所以C1=D1。
    (3)并事件(和事件)
    若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A和事件B的并事件(或和事件),记作 。
    例.若事件K={出现1点或5点} 发生,则事件C1 ={出现1点}与事件C5 ={出现 5 点 }中至少有一个会发生,则K .
    (4)交事件(积事件)
    若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A和事件B的交事件(或积事件),记作 。
    例.因为事件C1={出现1点}与事件C2={出现2点}不可能同时发生,故这两个事件互斥。
    例. 事件G ={出现的点数为偶数}与事件H ={出现的点数为奇数} 即为互为对立事件。
    互斥事件与对立事件的区别与联系:互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生.对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生且B不发生;(2)事件B发生事件A不发生.对立事件是互斥事件的特殊情形。
    例题分析:例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环; 事件B:命中环数为10环;事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环.
    分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。
    解:互斥事件有:A和C、B和C、C和D. 对立事件有:C和D.
    练习:从1,2,…,9中任取两个数,其中 (1)恰有一个是偶数和恰有一个是奇数; (2)至少有一个是奇数和两个数都是奇数; (3)至少有一个奇数和两个都是偶数; (4)至少有一个偶数和至少有一个奇数。 在上述事件中是对立事件的是 ( ) A.(1) B.(2) (4) C.(3) D.(1) (3)
    练习:判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明理由。 从40张扑克牌(红桃,黑桃,方块,梅花点数从1-10各10张)中,任取一张。 (1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”; (3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”。
    是互斥事件,不是对立事件
    既是互斥事件,又是对立事件
    不是互斥事件,也不是对立事件
    【二】.概率的几个基本性质:
    (1)任何事件的概率在0~1之间,即
    (2)必然事件的概率为1,即
    (3)不可能事件的概率为0,即
    (4)如果事件A与事件B互斥,则 P(A∪B)=P(A)+P(B)
    (5)如果事件B与事件A是互为对立事件,则 P(B)=1-P(A)
    例2 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是0.25,取到方块(事件B)的概率是0.25,问:(1)取到红色牌(事件C)的概率是多少?(2)取到黑色牌(事件D)的概率是多少?
    分析:事件C=A∪B,且A与B互斥,因此可用互斥事件的概率和公式求解,事件C与事件D是对立事件,因此P(D)=1-P(C).
    解:(1)P(C)=P(A)+ P(B)=0.25+0.25=0.5; (2)P(D)=1-P(C)=1-0.5=0.5.
    例3 甲,乙两人下棋,和棋的概率为1/2,乙获胜的概率为1/3,求:(1)甲获胜的概率;(2)甲不输的概率。
    分析:甲乙两人下棋,其结果有甲胜,和棋,乙胜三种,它们是互斥事件。
    解(1)“甲获胜”是“和棋或乙胜”的对立事件,所以甲获胜的概率是P=1-1/2-1/3=1/6。
    (2)解法1,“甲不输”看作是“甲胜”,“和棋”这两个事件的并事件所以P=1/6+1/2=2/3。解法2,“甲不输”看作是“乙胜”的对立事件,P=1-1/3=2/3。
    练习 某射手射击一次射中10环,9环,8环,7环的概率是0.24,0.28,0.19,0.16,计算这名射手射击一次 (1)射中10环或9环的概率; (2)至少射中7环的概率。
    (1) P(A∪B)=P(A)+P(B) =0.24+0.28=0.52。
    (2) 因为它们是互斥事件,所以至少射中7环的概率是0.24+0.28+0.19+0.16=0.87
    练习:某地区的年降水量在下列范围内的概率如下表所示:
    (1)求年降水量在[100,200)(mm)范围内的概率;
    (2)求年降水量在[150,300)(mm)范围内的概率。
    P=0.12+0.25=0.37
    P=0.25+0.16+0.14=0.55
    例4 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为1/3,得到黑球或黄球的概率是5/12,得到黄球或绿球的概率也是5/12,试求得到黑球、得到黄球、得到绿球的概率各是多少?
    分析:利用方程的思想及互斥事件、对立事件的概率公式求解.
    解:从袋中任取一球,记事件“摸到红球”、“摸到黑球”、“摸到黄球”、“摸到绿球”为A、B、C、D,
    则有 P(B∪C)=P(B)+P(C) =5/12;
    P(C∪D)=P(C)+P(D) =5/12;
    P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A) =1-1/3=2/3;
    解的P(B)=1/4,P(C)=1/6,P(D)=1/4.
    答:得到黑球、黄球、绿球的概率分别是1/4,1/6,1/4.
    例5. 某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3、0.2、0.1、0.4,(1)求他乘火车或乘飞机去的概率;(2)求他不乘轮船去的概率;(3)如果他乘某种交通工具去开会的概率为0.5,请问他有可能是乘何种交通工具去的?
    解:记“他乘火车去”为事件A,,“他乘轮船去”为事件B,“他乘汽车去”为事件C,“他乘飞机去”为事件D,这四个事件不可能同时发生,故它们彼此互斥, (1)故P(A∪D)=0.7; (2)设他不乘轮船去的概率为P,则P=1-P(B)=0.8; (3)由于0.5=0.1+0.4=0.2+0.3,故他有可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去。
    四、课堂小结1.概率的基本性质:1)必然事件概率为1,不可能事件概率为0, 因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式: P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有 P(A)=1-P(B);
    相关课件

    高中3.1.3概率的基本性质示范课ppt课件: 这是一份高中3.1.3概率的基本性质示范课ppt课件,文件包含313ppt、313doc等2份课件配套教学资源,其中PPT共44页, 欢迎下载使用。

    数学必修33.1.3概率的基本性质教课课件ppt: 这是一份数学必修33.1.3概率的基本性质教课课件ppt,共24页。PPT课件主要包含了问题提出,概率的基本性质,知识迁移,小结作业等内容,欢迎下载使用。

    数学必修33.1.3概率的基本性质课前预习课件ppt: 这是一份数学必修33.1.3概率的基本性质课前预习课件ppt,共12页。PPT课件主要包含了事件运算,事件关系,练习一,练习二,请判断那种正确等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map