高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式导学案
展开7.1 条件概率及全概率(精讲)
考法一 条件概率
【例1】(1)(2021·湖南长沙市·长郡中学高二期末)把一枚骰子连续抛掷两次,记事件为“两次所得点数均为奇数”,为“至少有一次点数是5”,则等于( )
A. B.
C. D.
(2)(2020·全国高三专题练习)袋中有5个球(3个白球,2个黑球)现每次取一球,无放回抽取2次,则在第一次抽到白球的条件下,第二次抽到白球的概率为( )
A.3/5 B.3/4
C.1/2 D.3/10
【一隅三反】
1.(2020·全国高三专题练习)一个盒子中装有个完全相同的小球,将它们进行编号,号码分別为、、、、、,从中不放回地随机抽取个小球,将其编号之和记为.在已知为偶数的情况下,能被整除的概率为( )
A. B.
C. D.
2.(2020·河北沧州市·高二期中)盒中有10个零件,其中8个是合格品,2个是不合格品,不放回地抽取2次,每次抽1个.已知第一次抽出的是合格品,则第二次抽出的是合格品的概率是( )
A. B.
C. D.
3.(2020·全国高三专题练习)甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询这三个项目,每人限报其中一项,记事件为“恰有2名同学所报项目相同”,事件为“只有甲同学一人报关怀老人项目”,则( )
A. B.
C. D.
4.(2020·北海市教育教学研究室高二期末(理))根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在下雨条件下吹东风的概率为( )
A. B.
C. D.
考法二 全概率公式
【例2】.(2020·全国高二课时练习)设患肺结核病的患者通过胸透被诊断出的概率为0.95,而未患肺结核病的人通过胸透被误诊为有病的概率为0.002,已知某城市居民患肺结核的概率为0.1%.若从该城市居民中随机地选出一人,通过胸透被诊断为肺结核,求这个人确实患有肺结核的概率.
【一隅三反】
1.(2020·全国高二课时练习)根据以往的临床记录,某种诊断癌症的试验具有如下的效果:若以表示事件“试验反应为阳性”,以表示事件“被诊断者患有癌症”,则有,.现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即,试求.
数学选择性必修 第三册7.1 条件概率与全概率公式优秀导学案: 这是一份数学选择性必修 第三册7.1 条件概率与全概率公式优秀导学案,共5页。学案主要包含了学习目标,自主学习,经典例题,跟踪训练,当堂达标,参考答案等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式优质导学案: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式优质导学案,共6页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,参考答案等内容,欢迎下载使用。
高中7.1 条件概率与全概率公式导学案及答案: 这是一份高中7.1 条件概率与全概率公式导学案及答案,共8页。