![2021年苏科版数学九年级上册第4章《等可能条件下的概率》单元检测卷(含答案)01](http://img-preview.51jiaoxi.com/2/3/12126728/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年苏科版数学九年级上册第4章《等可能条件下的概率》单元检测卷(含答案)02](http://img-preview.51jiaoxi.com/2/3/12126728/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年苏科版数学九年级上册第4章《等可能条件下的概率》单元检测卷(含答案)03](http://img-preview.51jiaoxi.com/2/3/12126728/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学苏科版九年级上册第4章 等可能条件下的概率综合与测试练习题
展开苏科版数学九年级上册
第4章《等可能条件下的概率》单元检测卷
一、选择题
1.下列成语中描述的事件必然发生的是( )
A.水中捞月 B.瓮中捉鳖 C.守株待兔 D.拔苗助长
2.在CBA常规赛中,易建联罚球投篮的命中率大约是82.3%.下列说法中,错误的是( ).
A.易建联罚球投篮2次,一定全部命中
B.易建联罚球投篮2次,不一定全部命中
C.易建联罚球投篮1次,命中的可能性较大
D.易建联罚球投篮1次,不命中的可能性较小
3.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是0.4,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为0.25,则原来盒里有白色棋子( )
A.1颗 B.2颗 C.3颗 D.4颗
4.有5张形状、大小、质地等均完全相同的卡片,正面分别印有等边三角形、平行四边形、正方形、菱形、圆,背面也完全相同.现将这5张卡片洗匀后正面向下放在桌上,从中随机抽出一张,抽出的卡片正面图案既是中心对称图形,又是轴对称图形的概率是( )
A. 0.2 B.0.4 C.0.6 D.0.8
5.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )
A. B. C. D.
6.如图,在4×4正方形网格中,任取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是( )
A. B. C. D.
7.一个不透明的口袋里装有除颜色不同外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出1球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球有( )
A.60个 B.50个 C.40个 D.30个
8.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是( )
A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都出现反面
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
9.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
A.20 B.24 C.28 D.30
10.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( )
A. B. C. D.
11.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
12.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )
A. B. C. D.
二、填空题
13.下列4个事件:
①异号两数相加,和为负数;
②异号两数相减,差为正数;
③异号两数相乘,积为正数;
④异号两数相除,商为负数.
这4个事件中,必然事件是 ,不可能事件是 ,随机事件是 (填序号).
14.已知一次函数y=kx+b,k从2,﹣3中随机取一个值,b从1,﹣1,﹣2中随机取一个值,则该一次函数的图象经过二、三、四象限的概率为 .
15.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其它格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是 .
16.如图,有甲,乙两个可以自由转动的转盘,若同时转动,则停止后指针都落在阴影区域内的概率是 .
17.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
种子粒数 | 100 | 400 | 800 | 1000 | 2000 | 5000 |
发芽种子粒数 | 85 | 298 | 652 | 793 | 1604 | 4005 |
发芽频率 | 0.850 | 0.745 | 0.815 | 0.793 | 0.802 | 0.801 |
根据以上数据可以估计,该玉米种子发芽的概率约为 (精确到0.1).
18.现有四张分别标有数字﹣3,﹣2,1,2的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上所标的数字都是非负数的概率为 .
三、解答题
19.在“谁转出的‘四位数’大”比赛中,小明和小新分别转动标有0-9十个数字的转盘四次,每次将转出的数填入表示四位数的四个方格中的任意一个,比较两人得到的四位数,谁得到的数大谁获胜.已知他们四次转出的数字如下表:
(1)小明和小新转出的四位数最大分别是多少?
(2)小明可能得到的四位数中“千位数字是9”的有哪几个?小新呢?
(3)小明一定能获胜吗?请说明理由.
20.一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.
(1)求从袋中摸出一个球是黄球的概率;
(2)现在从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于.问至少取出了多少个黑球?
21.儿童节期间,某公园游乐场举行一场活动.有一种游戏规则是在一个装有8个红球和若干个白球(每个球除颜色不同外,其他都相同)的袋中,随机摸1个球,摸到1个红球就得到1个玩具.已知参加这种游戏的儿童有40000人,公园游乐场发放玩具8000个.
(1)求参加此次活动得到玩具的频率;
(2)请你估计袋中白球的数量接近多少.
22.在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.小明先从袋中随机摸出一个小球,记下数字后不再放回,再从袋中剩下的3个小球中又随机摸出一个小球,记下数字.请用列表或画树状图的方法求出先后摸出的两个小球上的数字和为奇数的概率是多少?
23.“校园安全”受到全社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度,进行了随机抽样调查,并根据学生的成绩划分为A(熟悉)、B(基本了解)、C(略有知晓)、D(知之甚少)四个等次,绘制成如图所示的两幅统计图.
请根据以上信息回答下列问题:
(1)分别求出统计图中m,n的值;
(2)估计该校2350名学生中为A(熟悉)和B(基本了解)档次的学生共有多少人;
(3)从被调查的“熟悉”档次的学生中随机抽取2人,参加市举办的校园安全知识竞赛,请用列表或画树状图的方法求获A等级的小明参加比赛的概率.
24.中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了 名学生;
(2)将图1、图2补充完整;
(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).
参考答案
1.B
2.A.
3.B
4.C
5.D
6.A.
7.C.
8.D.
9.D.
10.A
11.C
12.B
13.答案为:④,③,①②.
14.答案为:1/3.
15.答案为:0.75.
16.答案为:0.5.
17.答案为:0.8.
18.答案为:.
19.解:(1)小明转出的四位数最大是9730,小新转出的四位数最大是9520.
(2)小明可能得到的“千位数字是9”的四位数有6个,分别为:
9730,9703,9370,9307,9073,9037.
小新可能得到的“千位数字是9”的四位数有6个,分别为:
9520,9502,9250,9205,9052,9025.
(3)不一定,因为如果小明得到的是9370,小新得到的是9520,则小新获胜.
20.解:
21.解:(1)参加此次活动得到玩具的频率为=0.2.
(2)设袋中共有m个球,则P(摸到1个球是红球)=,∴=0.2,解得m=40,
经检验,m=40是原方程的解,且符合题意.
∴袋中白球的数量接近40-8=32(个).
22.解:(1)
从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,
符合条件的结果有8种,∴(和为奇数).
23.解:(1)∵D有12人,占30%,∴共有:12÷30%=40(人),
∴n%=0.4×100%=40%,∴m%=1﹣20%﹣40%﹣30%=10%,∴m=10,n=40;
(2)2350×(10%+20%)=705(人);
(3)分别用A,B,C表示另外三人,画树状图得:
∵共有12种等可能的结果,获A等级的小明参加比赛的有6种情况,
∴获A等级的小明参加比赛的概率为:0.5.
24.解:
初中数学苏科版九年级上册第4章 等可能条件下的概率4.3 等可能条件下的概率(二)达标测试: 这是一份初中数学苏科版九年级上册<a href="/sx/tb_c100299_t7/?tag_id=28" target="_blank">第4章 等可能条件下的概率4.3 等可能条件下的概率(二)达标测试</a>,共7页。试卷主要包含了3 等可能条件下的概率等内容,欢迎下载使用。
数学九年级上册4.2 等可能条件下的概率(一)练习题: 这是一份数学九年级上册<a href="/sx/tb_c100298_t7/?tag_id=28" target="_blank">4.2 等可能条件下的概率(一)练习题</a>,共11页。试卷主要包含了2 等可能条件下的概率等内容,欢迎下载使用。
苏科版数学九年级上册第4章等可能条件下的概率期末章节提升练习: 这是一份苏科版数学九年级上册第4章等可能条件下的概率期末章节提升练习,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。