|试卷下载
搜索
    上传资料 赚现金
    2021年上海市金山区中考二模数学试卷
    立即下载
    加入资料篮
    2021年上海市金山区中考二模数学试卷01
    2021年上海市金山区中考二模数学试卷02
    2021年上海市金山区中考二模数学试卷03
    还剩11页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年上海市金山区中考二模数学试卷

    展开
    这是一份2021年上海市金山区中考二模数学试卷,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(共6小题;共30分)
    1. 下列根式中,是最简二次根式的是
    A. 8B. 5C. 33D. 42

    2. 已知 x>y,那么下列正确的是
    A. x+y>0B. ax>ayC. x−2>y+2D. 2−x<2−y

    3. 已知正比例函数的图象经过点 1,−2,那么这个正比例函数的解析式是
    A. y=−2xB. y=−12xC. y=2xD. y=12x

    4. 某人统计九年级一个班 35 人的身高时,算出平均数与中位数都是 158 厘米,但后来发现其中一位同学的身高记录错误,将 160 厘米写成了 166 厘米,经重新计算后,正确的中位数是 a 厘米,那么中位数 a 应
    A. 大于 158B. 小于 158C. 等于 158D. 无法判断

    5. 已知三条线段长分别为 2 cm,4 cm,a cm,若这三条线段首尾顺次连接能围成一个三角形,那么 a 的取值可以是
    A. 1 cmB. 2 cmC. 4 cmD. 7 cm

    6. 已知 ⊙A,⊙B,⊙C 的半径分别为 2,3,4,且 AB=5,AC=6,BC=6,那么这三个圆的位置关系
    A. ⊙A 与 ⊙B,⊙C 外切,⊙B 与 ⊙C 相交
    B. ⊙A 与 ⊙B,⊙C 相交,⊙B 与 ⊙C 外切
    C. ⊙B 与 ⊙A,⊙C 外切,⊙A 与 ⊙C 相交
    D. ⊙B 与 ⊙A,⊙C 相交,⊙A 与 ⊙C 外切

    二、填空题(共12小题;共60分)
    7. 因式分解:x2−4= .

    8. 已知 fx=x2−2x,那么 f2= .

    9. 如果反比例函数 y=m−1x(m 是常数,m≠1)的图象,在每个象限内 y 随着 x 的增大而减小,那么 m 的取值范围是 .

    10. 方程 x+2=−x 的解是 .

    11. 如果从方程 x+1=0,x2−2x−1=0,x+1x=1,x+1=0,x4−1=0,x+1x=3 中任意选取一个方程,那么取到的方程是整式方程的概率是 .

    12. 关于 x 的方程 x2−2x+k=0 有两个不相等的实数根,则实数 k 的取值范围 .

    13. 为了了解某校初三学生在体育测试中报名球类的情况,随机调查了 40 名学生的报名情况,得到如下数据.
    项目排球篮球足球人数101515
    根据此信息,估计该校 480 名初三学生报名足球的学生人数约为 人.

    14. 已知在正六边形 ABCDEF 中,AB=6,那么正六边形 ABCDEF 的面积等于 .

    15. 如图,BE,AD 分别是 △ABC 的两条中线,设 BO=a,BD=b,那么向量 AB 用向量 a,b 表示为 .

    16. 小张、小王两个人从甲地出发,去 8 千米外的乙地,图中线段 OA,PB 分别反映了小张,小王步行所走的路程 S(千米)与时间 t(分钟)的函数关系,根据图象提供的信息,小王比小张早到乙地的时间是 分钟.

    17. 如图,在 △ABC 中,AB=AC=4,BC=6,把 △ABC 绕着点 B 顺时针旋转,当点 A 与边 BC 上的点 Aʹ 重合时,那么 ∠AAʹB 的余弦值等于 .

    18. 如图,在矩形 ABCD 中,AB=3,BC=4,点 E 在对角线 BD 上,连接 AE,作 EF⊥AE 交边 BC 于 F,若 BF=3916,那么 BE= .

    三、解答题(共7小题;共91分)
    19. 计算:3−23+2+23+1−2−2−1−3.

    20. 解方程组:2x−y=1,2x2+xy−y2=5.

    21. 如图,是一个地下排水管的横截面图,已知 ⊙O 的半径 OA 等于 50 cm,水的深度等于 25 cm(水的深度指 AB 的中点到弦 AB 的距离).求:
    (1)水面的宽度 AB.
    (2)横截面浸没在水中的 AB 的长(结果保留 π).

    22. A,B两地相距 18 千米,甲工程队要在A,B两地间铺设一条输送天然气的管道,乙工程队要在A,B两地间铺设一条输油管道,已知甲工程队每天比乙工程队少铺设 1 千米.
    (1)若两队同时开工,甲工程队每天铺设 3 千米,求乙工程队比甲工程队提前几天完成?
    (2)若甲工程队提前 3 天开工,结果两队同时完成任务,求甲、乙两队每天各铺设管道多少千米?

    23. 如图,已知在梯形 ABCD 中,AD∥BC,对角线 BD 平分 ∠ABC,点 G 在底边 BC 上,连接 DG 交对角线 AC 于 F,∠DGB=∠DAB.
    (1)求证:四边形 ABGD 是菱形;
    (2)连接 EG,求证:BG⋅EG=BC⋅EF.

    24. 已知直线 y=kx+b 经过点 A−2,0,B1,3 两点,抛物线 y=ax2−4ax+b 与已知直线交于 C,D 两点(点 C 在点 D 的右侧),顶点为 P.
    (1)求直线 y=kx+b 的表达式;
    (2)若抛物线的顶点不在第一象限,求 a 的取值范围;
    (3)若直线 DP 与直线 AB 所成的夹角等于 15∘,且点 P 在直线 AB 的上方,求抛物线 y=ax2−4ax+b 的表达式.

    25. 已知在 △ABC 中,AB=AC=23,∠BAC=120∘,△ADE 的顶点 D 在边 BC 上,AE 交 BC 于点 F(点 F 在点 D 的右侧),∠DAE=30∘.
    (1)求证:△ABF∽△DCA;
    (2)若 AD=ED.
    ①连接 EC,当点 F 是 BC 的黄金分割点 FC>BF 时,求 S△ABFS△FEC.
    ②连接 BE,当 DF=1 时,求 BE 的长.
    答案
    第一部分
    1. B【解析】A,8=22,不是最简二次根式,不合题意;
    B,5 是最简二次根式,符合题意;
    C,33 是三次根式,不合题意;
    D,42 是四次根式,不合题意.
    2. D【解析】∵x>y,
    ∴x−y>0,ax>aya>0,x+2>y+2,2−x<2−y.
    3. A【解析】设这个正比例函数解析式为 y=kx,
    ∵ 正比例函数的图象经过点 1,−2,
    ∴−2=1⋅k,
    解得:k=−2,
    ∴ 这个正比例函数的解析式为:y=−2x.
    故选:A.
    4. C【解析】∵ 原来的中位数 158 厘米,将 160 厘米写成 166 厘米,最中间的数还是 158 厘米,
    ∴a=158.
    5. C
    【解析】依题意有 4−2解得:2只有选项C在范围内.
    6. A【解析】∵⊙A,⊙B,⊙C 的半径分别为 2,3,4,
    AB=5=2+3,AC=6=2+4,BC=6<3+4,
    根据圆与圆之间的位置关系可知:⊙A 与 ⊙B,⊙C 外切,⊙B 与 ⊙C 相交.
    第二部分
    7. x+2x−2
    8. 1
    【解析】当 x=2 时,f2=22−22=1.
    9. m>1
    【解析】∵ 反比例函数 y=m−1x 的图象在每个象限内,y 随着 x 的增大而减小,
    ∴m−1>0,
    解得,m>1.
    故答案是:m>1.
    10. x=−1
    【解析】把方程两边平方得 x+2=x2,
    整理得 x−2x+1=0,
    解得:x=2或−1,
    经检验,x=−1 是原方程的解.
    11. 12
    【解析】∵ 在所列的 6 个方程中,整式方程有 x+1=0,x2−2x−1=0,x4−1=0 这 3 个,
    ∴ 取到的方程是整式方程的概率是 36=12.
    12. k<1
    【解析】∵a=1,b=−2,c=k,
    ∴Δ=b2−4ac=−22−4×1×k=4−4k>0,
    解得:k<1.
    13. 180
    【解析】估计该校 480 名初三学生报名足球的学生人数约为 480×1540=180(人),
    故答案为:180.
    14. 543
    【解析】连接 OE,OD,如图所示:
    ∵ 六边形 ABCDEF 是正六边形,
    ∴∠DEF=120∘,
    ∴∠OED=60∘,
    ∵OE=OD=6,
    ∴△ODE 是等边三角形,
    作 OH⊥ED 于 H,则 OH=OE⋅sin∠OED=6×32=33,
    ∴S△ODE=12DE⋅OH=12×6×33=93,
    ∴S正六边形ABCDEF=6S△ODE=543.
    15. 2b−3a
    【解析】∵AD,BE 是 △ABC 的中线,
    ∴OA=2OD,
    ∵BD=BO+OD,
    ∴OD=b−a,
    ∴AO=2b−2a,
    ∵AB=AO+OB,
    ∴AB=2b−2a−a=2b−3a.
    16. 6
    【解析】由图象可知:
    设 OA 的解析式为:y=kx,
    ∵OA 经过点 60,5,
    ∴5=60k,得 k=112,
    ∴OA 函数解析式为:y=112x, ⋯⋯①
    把 y=8 代入① 得:8=112x,
    解得:x=96,
    ∴ 小张到达乙地所用时间为 96(分钟);
    设 PB 的解析式为:y=mx+n,
    ∴10m+n=0,60m+n=5,
    解得:m=110,n=−1.
    ∴PB 的解析式为:y=110x−1, ⋯⋯②
    把 y=8 代入②得:8=110x−1,
    解得:x=90,
    则小王到达乙地所用时间为小张出发后 90(分钟),
    ∴ 小王比小张早到 96−90=6(分钟).
    17. 24
    【解析】如图,作 AD⊥BC 于 D.
    ∵AB=AC=4,BC=6,
    ∴BD=DC=12BC=3,
    ∴AD2=AB2−BD2=42−32=7,
    由旋转的性质可知:AʹB=AB=4,
    ∴AʹD=AʹB−BD=4−3=1,
    根据勾股定理,得 AAʹ=AD2+AʹD2=7+1=22,
    ∴∠AAʹB 的余弦值等于 AʹDAAʹ=122=24.
    故答案为:24.
    18. 154
    【解析】如图,连接 AF,过点 E 作 EH⊥BC 于 H,
    ∵AB=CD=3,AD=BC=4,
    ∴BD=AB2+AD2=9+16=5,
    ∵AB=3,BF=3916,
    ∴AF=AB2+BF2=9+39162=151716,
    ∵∠ABC=∠AEF=90∘,
    ∴ 点 A,点 B,点 F,点 E 四点共圆,
    ∴∠DBC=∠EAF,
    ∴sin∠DBC=sin∠EAF=DCBD=EFAF.
    ∴35=EF151716,
    ∴EF=91617,
    ∵tan∠DBC=DCBC=EHBH,
    ∴EHBH=34,
    设 EH=3x,BH=4x,
    ∵EF2=FH2+EH2,
    ∴81×17256=9x2+4x−39162,
    ∴x=34 或 x=3100(不合题意舍去),
    ∴EH=94,BH=3,
    ∴BE=BH2+EH2=9+8116=154.
    第三部分
    19. 原式=3−2+23−13+13−1−12−3−1=3−2+3−1−12−3+1=12.
    20.
    2x−y=1, ⋯⋯①2x2+xy−y2=5, ⋯⋯②
    由①,得
    y=2x−1. ⋯⋯③
    把③代入②,得
    2x2+x2x−1−2x−12=5.
    整理,得
    3x−1=6.
    所以
    x=2.
    把 x=2 代入③,得
    y=2×2−1=3.∴
    原方程组的解为 x=2,y=3.
    21. (1) 过 O 作 OH⊥AB 于 H,并延长交 ⊙O 于 D,
    ∵OH⊥AB,OH 过 O,
    ∴∠OHA=90∘,AH=12AB,AD=BD,
    ∵ 水的深度等于 25 cm,
    ∴HD=25cm,
    ∵OA=OD=50 cm,
    ∴OH=OD−HD=25cm,
    ∴AH=OA2−OH2=502−252=253cm,
    ∴AB=503 cm.
    (2) 连接 OB,
    ∵OA=50 cm,OH=25 cm,
    ∴OH=12OA,
    ∵∠OHA=90∘,
    ∴∠OAH=30∘,
    ∴∠AOH=60∘,
    ∵OA=OB,OH⊥AB,
    ∴∠BOH=∠AOH=60∘,即 ∠AOB=120∘,
    ∴AB 的长是 120π×50180=100π3cm.
    22. (1) 甲工程队完成任务所需时间为 18÷3=6(天),
    乙工程队完成任务所需时间为 18÷3+1=4.5(天),
    6−4.5=1.5(天).
    答:乙工程队比甲工程队提前 1.5 天完成.
    (2) 设甲工程队每天铺设管道 x 千米,则乙工程队每天铺设管道 x+1 千米,
    依题意得:
    18x−18x+1=3.
    整理得:
    x2+x−6=0.
    解得:
    x1=−3,x2=2.
    经检验,x1=−3,x2=2 是原方程的解,
    x1=−3 不符合题意舍去,x2=2 符合题意,
    ∴x+1=3(千米).
    答:甲工程队每天铺设管道 2 千米,乙工程队每天铺设管道 3 千米.
    23. (1) ∵AD∥BC,
    ∴∠DAB+∠ABG=180∘,∠DGB+∠ADG=180∘,
    ∵∠DGB=∠DAB,
    ∴∠ABG=∠ADG,
    ∴ 四边形 ABGD 是平行四边形,
    ∵BD 平分 ∠ABC,
    ∴∠ADB=∠GDB,
    ∵AD∥BG,
    ∴∠ADB=∠DBG=∠BDG,
    ∴BG=DG,
    ∴ 四边形 ABGD 是菱形.
    (2) 如图,连接 EG,
    ∵ 四边形 ABGD 是菱形,
    ∴AB=BG=AD,∠ABE=∠GBE,
    在 △ABE 和 △GBE 中,
    AB=BG,∠ABE=∠GBE,BE=BE,
    ∴△ABE≌△GBESAS,
    ∴EG=AE,
    ∵AD∥BC,
    ∴△ADE∽△CBE,
    ∴ADBC=DEBE,
    ∵DF∥AB,
    ∴DEBE=EFAE,
    ∴ADBC=EFAE,
    ∵AD=BG,AE=EG,
    ∴BGBC=EFEG,
    ∴BG⋅EG=BC⋅EF.
    24. (1) ∵ 直线 y=kx+b 经过点 A−2,0 、 B1,3 两点,
    ∴0=−2k+b,3=k+b, 解得 k=1,b=2,
    ∴ 直线 y=kx+b 的表达式为 y=x+2;
    (2) ∵b=2,
    ∴ 抛物线 y=ax2−4ax+b 解析式为 y=ax2−4ax+2=ax−22+2−4a,
    ∴ 顶点是 2,2−4a,
    ∵ 顶点不在第一象限,且在对称轴 x=2 上,
    ∴ 顶点在第四象限或在 x 轴上,
    ∴2−4a≤0,即 a≥12;
    (3) 延长 PD 交 x 轴于 M,对称轴与 x 轴交于 N,如图:
    ∵P 在直线 AB 的上方,抛物线 y=ax2−4ax+b 与已知直线交于 C,D 两点(点 C 在点 D 的右侧),
    ∴ 开口向下,
    ∵ 直线 y=x+2 与抛物线 y=ax2−4ax+2 都经过 0,2,点 C 在点 D 的右侧,
    ∴D0,2,
    ∴OA=OD=2,∠AOD=90∘,
    ∴∠OAD=∠ODA=45∘,
    ∵ 直线 DP 与直线 AB 所成的夹角等于 15∘,
    ∴∠MDO=30∘,
    Rt△MDO 中,tan∠MDO=OMOD,
    ∴tan30∘=OM2,解得 OM=233,
    ∵ 对称轴与 x 轴交于 N,
    ∴OD∥PN,MN=ON+OM=2+233,
    ∴OMMN=ODPN,即 2332+233=2PN,
    ∴PN=2+23,
    而 P2,2−4a,
    ∴2−4a=2+23,
    ∴a=−32,
    ∴ 抛物线 y=ax2−4ax+b 的表达式为:y=−32x2+23x+2.
    25. (1) ∵AB=AC,
    ∴∠B=∠C,
    ∵∠BAC+∠B+∠C=180∘,∠BAC=120∘,
    ∴∠B=∠C=30∘,
    ∵∠DAE=30∘,
    ∴∠B=∠C=∠DAE,
    ∵∠ADC=∠B+∠BAD,∠BAF=∠DAE+∠BAD,
    ∴∠BAF=∠ADC,
    ∴△ABF∽△DCA.
    (2) ① ∵△ABF∽△DCA,
    ∴AFAD=BFAC,即 ADAC=AFBF,
    ∵AD=ED,
    ∴∠DAE=DEA,
    ∴∠DEA=∠C,
    ∵∠DAE=∠B,
    ∴△ABC∽△DAE,
    ∴ADAB=AEBC,即 ADAC=AEBC,
    ∴AFBF=AEBC,即 AEAF=BCBF,
    ∴EFAF=CFBF,
    ∵∠EFC=∠AFB,
    ∴△ECF∽△ABF,
    ∴S△ABFS△ECF=BFCF2,
    ∵ 点 F 是 BC 的黄金分割点 FC>BF,
    ∴BFCF=5−12,
    ∴S△ABFS△ECF=5−122=3−52;
    ②作 AH⊥BC 于 H,
    ∵AB=AC=23,∠ABC=30∘,
    ∴BC=2BH,AH=12AB=3,BH=AB2−AH2=3 得 BC=6,
    ∵△ABF∽△DCA,
    ∴ABCD=BFAC,即 CD⋅BF=AB⋅AC,
    设 BD=x,则 CD=6−x,
    ∵DF=1,
    ∴BF=x+1,
    ∴6−x⋅x+1=23×23,解得 x=2 或 x=3,
    ∴BD=2 或 3,
    当 BD=2 时,BF=3,即 F 为 BC 中点,如图:
    ∵AB=AC,
    ∴AF⊥BC,
    ∵AD=AE,
    ∴AF=EF,即 BC 垂直平分 AE,
    ∴BE=BA=23,
    当 BD=3 时,D 为 BC 中点,如图:
    ∵AB=AC,∠BAC=120∘,∠DAE=30∘,
    ∴AD⊥BC,∠BAD=12∠BAC=60∘,∠BAE=∠BAD+∠DAE=90∘,
    作 DG⊥AE 于 G,
    ∴AG=AD⋅cs30∘=32,
    ∵AD=DE,
    ∴AE=2AG=3,
    ∴BE=AB2+AE2=21,
    综上所述,DF=1 时,BE 为 23 或 21.
    相关试卷

    2023年上海市金山区中考数学二模试卷(含解析): 这是一份2023年上海市金山区中考数学二模试卷(含解析),共45页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年上海市金山区中考二模数学试卷含详解: 这是一份2023年上海市金山区中考二模数学试卷含详解,共20页。试卷主要包含了04,本试卷含三个大题,共25题;,计算________,已知,那么__,因式分解,分式方程的解是________等内容,欢迎下载使用。

    2023年上海市金山区中考数学二模试卷(含答案): 这是一份2023年上海市金山区中考数学二模试卷(含答案),共46页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map