2021年宁德初中数学第一次质检数学答案练习题
展开2021年宁德市初中毕业班第一次质量检测
数学试题参考答案及评分标准
⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.
⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.
⑶解答右端所注分数表示考生正确作完该步应得的累加分数.
⑷评分只给整数分,选择题和填空题均不给中间分.
一、选择题:(本大题有10小题,每小题4分,满分40分)
1.C;2.A ;3.B;4.D;5.A;6.C;7.B;8.C;9.B;10.D.
二、填空题:(本大题有6小题,每小题4分,满分24分)
11.;12.;13.;
14.兔子的只数(或兔子的数量等);15.;16.16.
三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)
17.(本题满分8分)
解法一:
①②,得 .
解得 ,························································4分
将代入①,得,
解得 .························································7分
所以原方程组的解为···············································8分
解法二:,
由①得 ③,
将③代入②,得 ,
解得 ··························································4分
把代入③,得 .·················································7分
所以原方程组的解为···············································8分
18.(本题满分8分)
证明:∵∠BAD=∠CAE,
∴∠BAD+∠DAC=∠CAE+∠DAC.
即∠BAC=∠DAE.·························3分
∵AB=AD,∠C=∠E,
∴△ABC≌△ADE.··························6分
∴BC=DE.·······························8分
19.(本题满分8分)
解:
····························································2分
····························································4分
. ·························································6分
当时,
原式.·························································8分
20. (本题满分8分)
解:设需要调用辆型车,根据题意,得 ································1分
.····························································5分
解得 .························································7分
∵为正整数,
∴的最小值为18.················································8分
答:至少需要调用型车18辆.
21.(本题满分8分)
(1)解:如图所示.
或
∴图中△FBC就是所求作的三角形.·································4分
(注:仅作出垂直平分线给2分)
(2)由(1)得 FB=FC=AB=5.
设FG⊥BC于点G.
∴,∠FGB=90°.···············································5分
在矩形ABCD中,
∵∠ABC=90°,
∴∠ABF+∠FBG=∠BFG+∠FBG=90°.
∴∠ABF=∠BFG.·············································6分
在Rt△FBG中,
==.························································7分
∴==.······················································8分
22.(本题满分10分)
(1)证明:连接OD.
∵DE⊥AC,
∴∠DEC=90°.····················1分
∵AB=AC,OB=OD,
∴∠B=∠C,∠B=∠ODB.············3分
∴∠C=∠ODB.
∴OD∥AC.
∴∠ODE=∠DEC=90°.··············4分
∴直线DE是⊙O的切线.···········································5分
(2)连接AD.
∵AB为⊙O直径,
∴∠ADB=90°.··················································6分
∵,
∴.
在Rt△ABD中,
.····························································7分
根据勾股定理,得
.
∴,AC=AB=10.·················································8分
∵,
∴.
解得DE=4.·····················································9分
在Rt△ODE中,根据勾股定理,得
.····························································10分
23. (本题满分10分)
(1)每人每天平均加工零件个数的中位数为:=21.5(个). ················1分
平均数为:
= =23(个),··················································4分
答:每人每天平均加工零件个数的中位数是21.5个,平均数是23个.
(2)①根据题意,得
这30名工人每个月基本工资总额为:
=84 800(元).
这30名工人所生产的零件计件工资总额为:
=45 540.························································6分
这30名工人每个月工资总额为:84 800+45 540=130 340(元).
因为130 340>130 000,
所以该等级划分不符合工厂要求. ····································8分
②方法1:将每天生产18个以下(含18个)的确定为普工,每天生产29个以上(含29个)的确定为技术能手.
方法2:将每天生产19个以下(含19个)的确定为普工,每天生产28个以上(含28个)的确定为技术能手.
方法3:将每天生产19个以下(含19个)的确定为普工,每天生产29个以上(含29个)的确定为技术能手. 10分
24.(本题满分12分)
解:(1)证明:∵四边形ABCD是正方形,
∴AB=BC,∠BAE=∠BCF=. ·····································1分
∵BE= BF,
∴∠BEF=∠BFE.
∴∠AEB=∠CFB. ············································2分
∴△ABE ≌△CBF.
∴AE=CF. ··················································3分
(2)∵∠BEC=∠BAE+∠ABE =+∠ABE,
∠ABF=∠EBF+∠ABE=+∠ABE,
∴∠BEC=∠ABF.·························4分
∵∠BAF=∠BCE=,
∴△ABF∽△CEB. ·······················5分
∴.
∴=16. ······················································7分
(3)解法一:如图2
∠EBF=∠GCF=45°,
∠EFB=∠GFC,
∴△BEF∽△CGF. ·························8分
∴.
即.
∵∠EFG=∠BFC,
∴△EFG∽△BFC. ························10分
∴∠EGF=∠BCF=45°.
∴∠EBF =∠EGF.
∴EB=EG. ·····················································12分
解法二:如图3,过点E作交CD于点K,交AB于点H,连接BD,
∵四边形ABCD是正方形,
∴∠BAE=∠BDG=∠ABD=.
∴∠ABD=∠EBF= .
∴∠ABE=∠DBG.
∴△ABE ∽△DBG. ······················8分
∴.
∴.
在Rt△AHE中,∠HAE=∠AEH=,
∴,AH=HE.
∴. ···································9分
在四边形AHKD中,
∵∠DAH=∠ADK=∠AHK=,
∴四边形AHKD是矩形.
∴DK=AH.
∴KG=DG-DK=2AH-AH=AH.
∴HE=KG. ··················································10分
在Rt△CEK中,∠KEC=∠KCE=,
∴EK=CK.
∵DK=AH,
∴AB-DK=CD-AH.
∴CK=BH.
∴EK=BH. ···················································11分
∵HE=KG,∠BHE=∠EKC=,EK=BH,
∴△BHE ≌△EKG.
∴BE=EG. ··················································12分
解法三:过点E作交AB于点H,交CD于点K,作交CD于点G′,连接EG′,
∴∠BHE=∠EKG′=90°.
∴∠BEH+∠EBH=90° ,∠BEH+G′EK=90°.
∴∠EBH=∠G′EK.
∵∠KHB=∠HBC=∠BCK=,
∴四边形HBCK是矩形.
∴HB=KC.
∵∠KEC=∠KCE=,
∴KE=KC=HB.
∴△BEH≌△EG′K. ···············································9分
∴BE=EG′.
∵BE⊥EG′,
∴∠EBG′=∠EG′B=45°.
∴∠EBG′=∠EBG=45°.············································11分
∵点G′与点G都在CD上,且在BE同侧,
∴点G′与点G重合.
∴BE=EG. ·····················································12分
25.(本题满分14分)
(1)解:依题意,得
,.
∴点A的坐标为(-3, ). ············································2分
当时,.
∴点B的坐标为(0,) .············································3分
(2)∵四边形ABCD是平行四边形,
∴CD∥AB.
∵点A是抛物线的最高点,点D在抛物线上,
∴点D在点A的下方.
由平移的性质可得点C在点B的下方.
∵点C在x轴上,点B的坐标为(0,) ,
∴>0.
①如图1,过点A,D作AE⊥y轴于点E,DF⊥x轴于点F.
∴∠AEB=∠DFC=90°.
∴∠EAB+∠ABE=90°.
∵四边形ABCD是矩形,
∴∠ABC=90°,AB=DC.
∴∠ABE+∠CBO=90°.
∴∠EAB=∠CBO.
同理可得∠DCF=∠CBO.
∴∠DCF=∠EAB.
∵∠AEB=∠COB=90°,
∴△ABE∽△BCO,△ABE≌△CDF .··································6分
∴,CF=AE,DF=BE.
∵AE=3,BE=,BO=c,
∴CO=.
∴点C的坐标为(,0),
点D的坐标为(,).
将点D(,)代入得
.
解得(舍去), .················································9分
所以c的值为
②如图2,设直线AB的表达式,
将A(-3, ),B (0, )代入得
解得
∴直线AB的表达式为. ···········································11分
过点D作DG⊥x轴交AB于点G,
设点D的坐标为(t,),
则点G的坐标为(t,),
=2=2××,
=2×()×3,
=.
∴当时,四边形ABCD的面积最大为. ································14分
解法二:连接AC,设抛物线的对称轴交x轴于点H,连接HB.
∵四边形ABCD是平行四边形,
∴CD∥AB.
设点D的坐标为(t,),
由平移的性质可得点C的坐标为(t+3,),
∵点C在x轴上,
∴ =0
∴c= ························································11分
∴
=
=
=
=
=
=.
∴当时,△ABC的面积最大为.
∵,
∴四边形ABCD的面积最大为. ·····································14分
2024年福建南平初中毕业班初三第一次质检数学试题: 这是一份2024年福建南平初中毕业班初三第一次质检数学试题,文件包含九年级数学试题pdf、九年级数学参考答案pdf等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
2023年福建省宁德市中考数学质检试卷(含解析): 这是一份2023年福建省宁德市中考数学质检试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年福建省宁德市寿宁县中考数学质检试卷(含解析): 这是一份2023年福建省宁德市寿宁县中考数学质检试卷(含解析),共19页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。