初中人教版第十五章 分式15.3 分式方程教学设计
展开
这是一份初中人教版第十五章 分式15.3 分式方程教学设计,共5页。教案主要包含了学习目标,要点梳理,典型例题,总结升华,答案与解析,思路点拨等内容,欢迎下载使用。
专题15.9 分式方程的解法及应用(知识讲解)【学习目标】1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.2. 会列出分式方程解简单的应用问题.【要点梳理】 要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点四、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.【典型例题】 类型一、判别分式方程 1、下列方程中,是分式方程的是( ).A. B.C. D.,(,为非零常数)【答案】B;【解析】A、C两项中的方程尽管有分母,但分母都是常数;D项中的方程尽管含有分母,但分母中不含未知数,由定义知这三个方程都不是分式方程,只有B项中的方程符合分式方程的定义.【总结升华】要判断一个方程是否为分式方程,就看其有无分母,并且分母中是否含有未知数.类型二、解分式方程 2、 解分式方程(1);(2).【答案与解析】解:(1),将方程两边同乘,得.解方程,得.检验:将代入,得.∴ 是原方程的解.(2),方程两边同乘以,得.解这个方程,得.检验:把代入最简公分母,得2×5×1=10≠0.∴ 原方程的解是.【总结升华】将分式方程化为整式方程时,乘最简公分母时应乘原分式方程的每一项,不要漏乘常数项.特别提醒:解分式方程时,一定要检验方程的根.举一反三:【变式】解方程:.【答案】解:,方程两边都乘,得,解这个方程,得,检验:当时,,∴ 是增根,∴ 原方程无解.类型三、分式方程的增根3、 若解关于x的分式方程会产生增根,求m的值.【思路点拨】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【答案与解析】解:方程两边都乘(x+2)(x﹣2),得2(x+2)+mx=3(x﹣2)∵最简公分母为(x+2)(x﹣2),∴原方程增根为x=±2,∴把x=2代入整式方程,得m=﹣4.把x=﹣2代入整式方程,得m=6.综上,可知m=﹣4或6.【总结升华】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.举一反三:【变式】如果方程有增根,那么增根是________.【答案】;提示:因为增根是使分式的分母为零的根,由分母或可得.所以增根是.类型四、分式方程的应用4、甲、乙两班参加绿化校园植树活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等.求甲、乙两班每小时各种多少棵树?【思路点拨】本题的等量关系为:甲班种60棵树所用的时间与乙班种66棵树所用的时间相等.【答案与解析】解:设甲班每小时种棵树,则乙班每小时种棵树.由题意可得,解这个方程,得.经检验是原方程的根且符合题意.所以(棵).答:甲班每小时种20棵树,乙班每小时种22棵树.【总结升华】解此题的关键是设出未知数后,用含的分式表示甲、乙两班种树所用的时间.举一反三:【变式】 王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?【答案】解:设原计划每小时检修管道x米. 由题意,得. 解得 . 经检验,是原方程的解.且符合题意. 答:原计划每小时检修管道50米.
相关教案
这是一份初中数学人教版八年级上册第十五章 分式15.2 分式的运算15.2.2 分式的加减教学设计,共4页。教案主要包含了学习目标,要点梳理,典型例题,答案与解析,总结升华,思路点拨等内容,欢迎下载使用。
这是一份2020-2021学年15.2.1 分式的乘除教学设计,共5页。教案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
这是一份初中数学人教版八年级上册15.1 分式综合与测试教案设计,共7页。教案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。

