搜索
    上传资料 赚现金
    英语朗读宝

    人教版数学八年级下17.1 第2课时 勾股定理的应用 教案

    人教版数学八年级下17.1 第2课时 勾股定理的应用 教案第1页
    还剩2页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级下册第十七章 勾股定理17.1 勾股定理第2课时教案及反思

    展开

    这是一份人教版八年级下册第十七章 勾股定理17.1 勾股定理第2课时教案及反思,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。
    2课时 勾股定理的应用
     1.熟练运用勾股定理解决实际问题;(重点)2.掌握勾股定理的简单应用,探究最短距离问题.(难点)                   一、情境导入如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理的实际应用【类型一】 勾股定理在实际问题中的应用 如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?解析:开始时,AC5米,BC13米,即可求得AB的值,6秒后根据BCAC长度即可求得AB的值,然后解答即可.解:RtABC中,BC13米,AC5米,则AB12.6秒后,BC130.5×610米,则AB5(),则船向岸边移动的距离为(125)米.方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.【类型二】 利用勾股定理解决方位角问题 如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出AC两点之间的距离.解析:根据所走的方向可判断出ABC是直角三角形,根据勾股定理可求出解.解:ADBE∴∠ABEDAB60°.∵∠CBF30°∴∠ABC180°ABECBF180°60°30°90°.RtABC中,AB100kmBC100kmAC200(km)AC两点之间的距离为200km.方法总结:先确定ABC是直角三角形,再根据各边长,用勾股定理可求出AC的长.【类型三】 利用勾股定理解决立体图形最短距离问题 如图,长方体的长BE15cm,宽AB10cm,高AD20cm,点MCH上,且CM5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?解:分两种情况比较最短距离:如图所示,蚂蚁爬行最短路线为AMAM5(cm),如图所示,蚂蚁爬行最短路线为AMAM25(cm)525第二种短些,此时最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型四】 运用勾股定理解决折叠中的有关计算 如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B处,点A的对应点为A,且BC3,则AM的长是(  )   A1.5   B2   C2.25   D2.5解析:连接BMMB′.AMx,在RtABM中,AB2AM2BM2.RtMDB中,MD2DB2.MBMBAB2AM2BM2BM2MD2DB2,即92x2(9x)2(93)2,解得x2,即AM2.故选B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型五】 勾股定理与方程思想、数形结合思想的应用 如图,在树上距地面10mD处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.解析:RtABC中,B90°,则满足AB2BC2AC2.BCamACbmADxm,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.解:RtABC中,B90°,设BCamACbmADxm.两猴子所经过的路程都是15m,则10axb15m.a5b15x.RtABC中,由勾股定理得(10x)2a2b2(10x)252(15x)2,解得x2,即AD2米.ABADDB21012()答:树高AB12米.方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.探究点二:勾股定理与数轴 如图所示,数轴上点A所表示的数为a,则a的值是(  )A.1  B.-1C.1  D.解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为12斜边长为1A的距离是.那么点A所表示的数为1.故选C.方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的位置,再根据A的位置来确定a的值.三、板书设计1.勾股定理的应用方位角问题;路程最短问题;折叠问题;数形结合思想.2.勾股定理与数轴本节课充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.  

    相关教案

    初中数学17.1 勾股定理第2课时教案:

    这是一份初中数学17.1 勾股定理第2课时教案,共4页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。

    八年级下册17.1 勾股定理第1课时教学设计:

    这是一份八年级下册17.1 勾股定理第1课时教学设计,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。

    初中数学人教版八年级下册17.1 勾股定理教案:

    这是一份初中数学人教版八年级下册17.1 勾股定理教案,共5页。教案主要包含了回顾思考,展示目标,情景导入,自学指导,合作探究,拓展延伸,总结提升,达标检测等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map