终身会员
搜索
    上传资料 赚现金
    专题2.8 欲证不等恒成立,结论再造是利器-2020届高考数学压轴题讲义(解答题)(解析版)
    立即下载
    加入资料篮
    专题2.8 欲证不等恒成立,结论再造是利器-2020届高考数学压轴题讲义(解答题)(解析版)01
    专题2.8 欲证不等恒成立,结论再造是利器-2020届高考数学压轴题讲义(解答题)(解析版)02
    专题2.8 欲证不等恒成立,结论再造是利器-2020届高考数学压轴题讲义(解答题)(解析版)03
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题2.8 欲证不等恒成立,结论再造是利器-2020届高考数学压轴题讲义(解答题)(解析版)

    展开
    这是一份专题2.8 欲证不等恒成立,结论再造是利器-2020届高考数学压轴题讲义(解答题)(解析版),共33页。

    题型综述

    利用导数解决不等式恒成立问题的策略:

    利用导数证明不等式,解决导数压轴题,谨记两点:

    )利用常见结论,如:等;

    )利用同题上一问结论或既得结论.

    【典例指引】

    1已知,直线与函数的图像都相切,且与函数的图像的切点的横坐标为1

    I)求直线的方程及m的值;

    II)若,求函数的最大值.

          III)当时,求证:

    取最大值,其最大值为2

    III

    证明,当时,

    学科&

    2.设函数,其中R为自然对数的底数.

    )当时, 恒成立,求的取值范围;

    )求证: (参考数据:)

    【思路引导】

    1)先构造函数,再对其求导得到

    然后分两种情形分类讨论进行分析求解:(2)借助(1)的结论,当时,恒成立, 再令,得到; 又由()知,当时,则递减,在递增,则,即,又,即,令,即,则,故有

    点评:解答本题的第一问时,先构造函数,再对其求导得到然后分两种情形分类讨论进行分析求解;证明本题的第二问时,充分借助(1)的结论及当时, 恒成立,令,得到; 进而由()知,当时,则递减,在递增,则,即,又,即,令,即,则,故有.从而使得问题巧妙获证.学科&

    3.设

    l)若对一切恒成立,求的最大值;

    2)是否存在正整数,使得对一切正整数都成立?若存在,求的最小值;若不存在,请说明理由.

    【思路引导】

    1)即在时,,从而求的参数的范围,,所以函数 ,所以.(2)由(1)可知当时,,取,得,即.累加可证到.所以

    2)设[来源:Z&xx&k.Com]

    ,令

    递减;在递增.

    最小值为,故

    ,即学科&

    累加得

    故存在正整数,使得

    时,取,有,不符合.故学科&

    新题展示

    12019安徽安庆上学期期末1)已知函数,求函数时的值域;

    2)函数有两个不同的极值点

    求实数的取值范围;

    证明:.

    (本题中可以参与的不等式:

    思路引导

    (1)首先可对函数进行求导,然后分析函数上的单调性并求出最值,最后即可求出函数上的值域;

    (2)首先将有两个不同极值点转化为有两个不同的正实根,再根据(1)中所给出的函数性质即可得出结果;

    可利用分析法进行证明。

    【解析】

    由条件有两个不同的极值点知:

    ,于是有

    所以,即

    要证成立,只需证明

    只需证

    只需证

    只需证

    只需证,令

    只需证,而题中已给出该不等式成立.

    即证

    22019河南驻马店上学期期末是函数的两个极值点,其中.

    1)求的取值范围;

    2)若,求的最大值.

    思路引导

    1)求出 ,方程有两个不等的正根(其中.由韦达定理可得,由此可得 ,由二次函数的性质可得结果;(2)设,则 ,求出,利用导数研究函数的单调性,利用单调性求出最值,从而可得结果.

    【解析】

    ,

    的取值范围是:.

    ,则

    上单调递减,

    的最大值是:.

    32019湖南益阳上学期期末已知函数.

    1)当时,比较的大小;

    2)若有两个极值点,求证:.

    思路引导

    (1),可得,可得故时为增函数,可得结论;

    2,可得上有两个零点.时,上为增函数,不可能有两个零点,

    .此时,即,整理得,即.可得,故要证成立,只需证,即证,不妨设,即证.,原不等式化为.由(1)得当时,.故只需证,化为,故原式得证.

    【解析】

    2.

    上有两个零点.

    ,即上有两个零点.

    时,上为增函数,不可能有两个零点,

    .此时,即,整理得,即.

    .

    故要证成立,

    只需证,即证

    42019广东韶关1月调研已知函数(其中是自然对数的底数).

    1)证明:时,时,.

    2)是否存在最大的整数,使得函数在其定义域上是增函数?若存在,求的值;若不存在,请说明理由.

    思路引导

    (1)直接作差,构建新函数研究最值即可;同样作差构建函数,研究最值即可;

    (2)由题意可得,变量分离研究最值即可.[来源:Zxxk.Com]

    【解析】

    时,,故在区间上为减函数,

    时,,故在区间上为增函数,

    因此,故.

    ,因此为增函数

    当时,故.

    为增函数,

    因此在区间上有唯一的零点,记它为

    上单调递减,在上单调递增,

    ,因此,其中

    由(1)可知恒成立,且当时,成立

    当且仅当时等号成立.

    因此.

    因此,即存在最大的整数28,使得在其定义域上是增函数.

    52019天津部分区期末已知函数,其中.

    1)当时,求曲线在点处的切线方程;

    2)记的导函数为,若不等式在区间上恒成立,求的取值范围;

    3)设函数是函数的导函数,若存在两个极值点,且满足,求实数的取值范围.

    思路引导

    )当时,1,可得1.利用点斜式即可得出切线方程.

    .不等式,化为:.令上恒成立,1.可得上恒成立,化为:即可得出.

    )根据可得关于x的函数表达式,根据存在两个极值点,可得=0上有两个不等实数根.因此,得出a的取值范围.并根据满足,代入简化,利用导数研究其单调性即可得出结果.

    【解析】

    )设函数

    存在两个极值点

    上有两个不等实数根

    因此,且

    解得

    ,满足

    化为:

     

    【同步训练】

    1已知函数,(其中为自然对数的底数, ……).

    1)令,若对任意的恒成立,求实数的值;

    2)在(1)的条件下,设为整数,且对于任意正整数,求的最小值.

    【思路引导】

    1)由对任意的恒成立,即,利用导数讨论函数的单调性,求出最小值,即可得到实数的值;(2)由(1)知,即,令)则,所以,令,求和后利用放缩法可得,从而可得的最小值.所以

    2)由(1)知,即

    )则,所以

    所以

    ,所以,又,所以的最小值为学科&

    2设函数

    1)当时,求的单调区间;

    2)若的图象轴交于两点,且,求的取值范围;

    3)令,证明:

    【思路引导】

    1)当时,求出,由 可得增区间,由可得减区间;(2)求出函数的导数,由,得到函数的单调区间,根据函数的单调性可得,从而确定的范围;(3)当时,先证明,则叠加得化简即可得结果.

    3)令

    ,得

    学科&

    3已知函数

    1)若函数有两个不同的零点,求实数的取值范围;

    2)当时,恒成立的的取值范围,并证明

    【思路引导】

     (1) 函数有两个不同的零点,等价=在(+)上有两实根,利用导数研究函数的单调性,结合函数图象即可得结果;(2)结合(1)可得<,令

    ,各式相加,化简即可得结果.

    点评:不等式证明问题是近年高考命题的热点,命题主要是和导数、绝对值不等式及柯西不等式相结合,导数部分一旦出该类型题往往难度较大,要准确解答首先观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明.

    4已知函数

    1)若曲线与直线恰好相切于点,求实数的值;

    2)当时,恒成立,求实数的取值范围;

    3)求证:

    【思路引导】

    1)根据导数几何意义得,即得实数的值;(2)利用分参法将不等式恒成立问题转化为对应函数最值问题x>1)最大值,再利用导数研究函数单调性:单调递减,最后根据洛必达法则求最大值,即得实数的取值范围(3)先根据和的关系转化为对应项的关系: ,再利用(2)的结论,令,则代入放缩得证

    方法二:(先找必要条件)

    注意到时,恰有

    恒成立的必要条件为

    学科&

    3)不妨设项和,则

    要证原不等式,只需证

    而由(2)知:当时恒有

    当且仅当时取等号

    ,则

    成立,从而原不等式获证.学科&

    点评:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.

    5.已知函数

    )若函数的图像在点处有相同的切线,求的值;

    )当时,恒成立,求整数的最大值;

    )证明:

    【思路引导】

     ()求出,由解方程组可求的值;(恒成立等价于恒成立,先证明当时恒成立,再证明时不恒成立,进而可得结果;())由,令,即,即,令 ,各式相加即可得结果.

    )由,令

    ,即

    由此可知,当时,

    时,

    时,

    ……

    时,

    综上:

    [来源:学。科。网ZXXK]

    学科&

    6.已知函数是自然对数的底数),

    1)求曲线在点处的切线方程;

    2)求的单调区间;

    3)设,其的导函数,证明:对任意

    【思路引导】

    1)对函数f(x)求导,,代入x=1,可求得切点坐标再点斜式可求切线方程.(2)定义域因为,可得单调区间.(3 等价于时恒成立由(2)知,当时, 的最大值,即证.

    )证明:因为,所以 等价于时恒成立,

    由()知,当时, 的最大值 

    学科&[来源:__Z_X_X_K]

    因为       

    所以

    因此任意      

    7.设函数,其中

    1)当时,求曲线在点处的切线方程;

    2)讨论函数的单调性;

    3)当,且时证明不等式:

    【思路引导】

    )代入时,求得,求得切线的斜率,即可求解切线的方程;()求得的表达式,分三种情况分类讨论,即可求解函数的单调区间; ()先由时,证得,再取,进而可证明上述不等式.

    )证明:当-1时,

    ,则上恒正

    所以, 上单调递增,当时,恒有

    即当时,

    对任意正整数,取

    所以,

    =

    =

    =

    点评:本题主要考查了函数的综合问题,其中解答中涉及到导数的几何意义求解在某点的切线方程的求解、利用导数研究函数的单调性,求解函数的单调区间,不等关系的证明等知识点的综合考查,试题有一定的难度,属于中档试题,其中解得中对导数的合理分类讨论和根据题设合理变换和换元是解答的难点[来源:##Z#X#X#K]

    8.已知函数

    1)当时,讨论的单调性;

    2)当时,若,证明:当时,的图象恒在的图象上方;

    3)证明:[来源:学科网ZXXK]

    【思路引导】

    1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2时, ,设,求出函数的导数,利用导数性质推导出恒成立,由此能证明的图象恒在图象的上方;(3)由,设,求出函数的导数,从而,令,得,从而证明结论成立即可

    3)由(2)知,即

    ,则,即

    学科&

    点评本题考查导数知识的运用,考查函数的单调性,由,得函数单调递增,得函数单调递减;考查将问题转化为恒成立问题,正确分离参数是关键,也是常用的一种手段通过分离参数可转化为恒成立,即即可,利用导数知识结合单调性求出即得解,此题最大的难点在于构造法证明不等式

    9已知函数

    1)若函数在区间上递增,求实数的取值范围;

    2)求证:

    【思路引导】

    对函数求导,可知其导数在大于,利用分离变量转化为函数求恒成立问题,可得的取值范围; 利用中结论可得,则有,利用累加和裂项可证不等式.

    所以,....,

    所以

    ,得证.

    10.已知函数 (其中)

    (1)若函数上为增函数,求实数的取值范围;

    (2)时,求函数上的最大值和最小值;[来源:学科网ZXXK]

    (3)时,求证:对于任意大于1的正整数,都有

    【思路引导】

    1先求出函数的导数由题意可知:当恒成立,解出的取值范围即可;(2求导函数,确定函数的单调性,比较端点的函数值,即可求得结论;(3)利用2的结论只要令利用放缩法证明即可

    上有唯一的极小值点,也是最小值点,

    又因为

    所以上有的最大值是

    综上所述,上有的最大值是,最小值是0

    11.已知函数

    (Ⅰ)有唯一解,求实数的值;

    )证明:当时,

    (附:

    【思路引导】

    ()使有唯一解,只需满足,的解唯一,求导研究函数,注意分类讨论利用极值求函数最大值;()只需证即证,构造函数,利用单调性,极值求其最小值,证明其大于零即可.

    ,且时, 单调递增;当时, 单调递减,所以有唯一的一个最大值为,

    ,则,

    时, ,单调递减;当时,故单调递增,

    所以,故令,解得

    此时有唯一的一个最大值为,且的解集是,符合题意;[来源:学科网]

    综上,可得

    )要证当时,

    即证当,

    即证

    由()得,当时, ,,又,从而,

    故只需证,当时成立;

    ,则,

    ,则,令,得

    因为单调递增,所以当时, 单调递减,即单调递减,当时, 单调递增,即单调递增,

    ,

    由零点存在定理,可知,使得

    故当时, 单调递增;当时, 单调递减,所以的最小值是

    ,得

    ,

    因为,所以,

    故当时,所以,原不等式成立.

    点评:本题考查函数的单调性极值及恒成立问题,涉及函数不等式的证明,综合性强,难度大,属于难题.处理导数大题时,注意分层得分的原则,力争第一二问答对,第三问争取能写点,一般涉及求函数单调性及极值时,比较容易入手,求导后注意分类讨论,对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会.

    12. 已知函数

    )若函数有极值,求实数的取值范围; [来源:Zxxk.Com]

    )当有两个极值点(记为)时,求证:

    【思路引导】

    )由已知得x>0,且有,,由此利用导数性质能求出当函数fx)存在极值时,实数a的取值范围是a>4
    x1x2x2+2-ax+1=0的两个解,从而x1x2=1,欲证原不等式成立,只需证明fx-lnx≥fx-x+1成立,即证lnx-x+1≤0成立,由此利用构造法和导数性质能证[来源:学科网]

    的两个极值点,故满足方程

    的两个解,

    而在中,

    欲证原不等式成立,只需证明

    ,只需证明成立

    即证成立

    ,则

    时, ,函数上单调递增;

    时, ,函数上单调递减;

    因此,故,即成立得证.

    13已知

    1)求函数在区间上的最小值;

    2)对一切实数恒成立,求实数的取值范围;

    3)证明:对一切恒成立.

    【思路引导】

    1求出分三种情况讨论,分别令 得增区间,得减区间从而可得函数在区间上的最小值;(2等价于只需以即可;3问题等价于证明的最小值是最大值为

    2,则

    ,则

    单调递增,

    单调递减,所以,因为对一切恒成立,

    所以

    3)问题等价于证明

    可知的最小值是,当且仅当时取到,

    ,则,易得,当且仅当时取到,从而对一切,都有成立.

    14.已知函数

    I)求的单调区间;

    II)若对任意的,都有,求实数的取值范围.

    【思路引导】

    对函数求导,针对参数进行讨论,研究函数得单调性;第二步为恒成立问题,当时,由于不满足题意要求,当 时,求出函数 的最大值,要使上恒成立,只需 ,从而求出 的范围

    方法2 等价于.令,则   

    相关试卷

    高考数学压轴难题归纳总结培优专题2.6 欲证不等恒成立 差值函数求值域 (含解析): 这是一份高考数学压轴难题归纳总结培优专题2.6 欲证不等恒成立 差值函数求值域 (含解析),共19页。

    备战2022年高考数学压轴题专题2.7 欲证不等恒成立结论再造是利器: 这是一份备战2022年高考数学压轴题专题2.7 欲证不等恒成立结论再造是利器,共26页。

    专题2.7 欲证不等恒成立,目标调整依形式-2020届高考数学压轴题讲义(解答题)(原卷版): 这是一份专题2.7 欲证不等恒成立,目标调整依形式-2020届高考数学压轴题讲义(解答题)(原卷版),共5页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题2.8 欲证不等恒成立,结论再造是利器-2020届高考数学压轴题讲义(解答题)(解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map