年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    _上海市闵行区2020-2021学年八年级上学期期中数学试卷(word版 含答案)

    _上海市闵行区2020-2021学年八年级上学期期中数学试卷(word版 含答案)第1页
    _上海市闵行区2020-2021学年八年级上学期期中数学试卷(word版 含答案)第2页
    _上海市闵行区2020-2021学年八年级上学期期中数学试卷(word版 含答案)第3页
    还剩14页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    _上海市闵行区2020-2021学年八年级上学期期中数学试卷(word版 含答案)

    展开

    这是一份_上海市闵行区2020-2021学年八年级上学期期中数学试卷(word版 含答案),共17页。试卷主要包含了二次根式的一个有理化因式是,下列二次根式中,最简二次根式是,下列命题是真命题的是,化简等内容,欢迎下载使用。
    2020-2021学年上海市闵行区八年级(上)期中数学试卷
    一.选择题
    1.二次根式的一个有理化因式是(  )
    A. B. C.+ D.﹣
    2.下列二次根式中,最简二次根式是(  )
    A. B. C. D.
    3.下列方程是关于x的一元二次方程的是(  )
    A.x2﹣2x= B.x(x﹣2)=x2 C.x2=3(x+2) D.ax2+bx+c=0
    4.下列关于x的一元二次方程中,没有实数根的是(  )
    A.x2﹣6x+1=0 B.2x2+2=x
    C.4x2+4x+1=0 D.x2﹣(m﹣1)x=3
    5.下列命题是真命题的是(  )
    A.两个锐角的和还是锐角
    B.全等三角形的对应边相等
    C.同旁内角相等,两直线平行
    D.等腰三角形既是轴对称图形,又是中心对称图形
    6.如图,在△ABC中,∠ACB=90°,CH⊥AB,垂足为点H,AD平分∠BAC,与CH相交于点D,过点D作DE∥BC,与边AB相交于点E,那么下列结论中一定正确的是(  )

    A.DA=DE B.AC=EC C.AH=EH D.CD=ED
    二.填空题
    7.化简:=   .
    8.化简:(y≥0)=   .
    9.如果=1﹣a,那么a的取值范围是   .
    10.不等式x﹣3<x的解集是   .
    11.已知最简二次根式x与3是同类二次根式,那么x=   .
    12.方程x2=x的根是   .
    13.在实数范围内因式分解:2x2﹣3x﹣1=   .
    14.方程3x2+4x﹣2=0的根的判别式的值为   .
    15.某种商品原价800元,经过两次降价后售价为612元,其中第二次降价的百分率比第一次降价的百分率多5%,如果设第一次降价的百分率为x,那么根据题意所列出的方程为   .(只需列出方程,无需求解)
    16.命题“同位角相等,两直线平行”写成“如果…,那么…”的形式为   .
    17.如图,已知AC=DB,要使得三角形ABC≌△DCB,还需添加一个条件,那么这个条件可以是   .(只需填写一个条件即可)

    18.如图,三角形纸片ABC中,∠A=75°,∠B=72°.将三角形纸片的一角折叠,使点C落在△ABC内,如果∠1=32°,那么∠2=   度.

    三.解答题
    19.(+2)﹣(﹣)
    20.解方程:(x+2)(x+1)=12.
    21.用配方法解方程:2x2+6x﹣1=0.
    22.先化简,再求值:[+]÷,其中x=1,y=2.
    23.如图,已知:AB⊥BD,AC⊥CD,且∠BAD=∠CAD.求证:AD⊥BC.

    24.已知关于x的一元二次方程(m+1)x2﹣3x+2=0(m为常数).
    (1)如果方程有两个不相等的实数根,求m的取值范围;
    (2)如果方程有两个相等的实数根,求m的值;
    (3)如果方程没有实数根,求m的取值范围.
    25.某建筑工程队,在工地一边的靠墙处(墙的长度为70米),用120米长的铁栅栏围成一个所占地面为长方形的临时仓库,铁栅栏只围三边,并且在平行于墙的一边开一扇宽为2米的门,如果围成的长方形临时仓库的面积为1800平方米,求长方形的两条边的长.
    26.如图,已知:在△ABC中,点D是边AC的中点,点E是边BC的延长线上一点,过点A作BE的平行线与线段ED的延长线相交于点F,联结AE.
    (1)求证:AF=CE;
    (2)联结CF,交边AB于点G,如果CF⊥AB,求证:∠ABC+∠AEB=90°.

    27.如图,已知:△ABC是等边三角形,CE是△ABC的外角∠ACM的平分线,点D为射线BC上一点,且∠ADE=∠ABC,DE与CE相交于点E.
    (1)如图1,如果点D在边BC上,求证:AD=DE;
    (2)如图2,如果点D在边BC的延长线上,那么(1)的结论“AD=DE”还能成立吗?请说明理由.
    (3)如果△ABC的边长为4,且∠DAC=30°,请直接写出线段BD的长度.(无需写出解题过程)



    2020-2021学年上海市闵行区八年级(上)期中数学试卷
    参考答案与试题解析
    一.选择题
    1.二次根式的一个有理化因式是(  )
    A. B. C.+ D.﹣
    【分析】两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.
    【解答】解:因为×=a﹣b,
    所以二次根式的一个有理化因式可以是.
    故选:B.
    2.下列二次根式中,最简二次根式是(  )
    A. B. C. D.
    【分析】根据最简二次根式的概念判断即可.
    【解答】解:A、,是最简二次根式;
    B、=3,不是最简二次根式;
    C、=|a|,不是最简二次根式;
    D、=,不是最简二次根式;
    故选:A.
    3.下列方程是关于x的一元二次方程的是(  )
    A.x2﹣2x= B.x(x﹣2)=x2 C.x2=3(x+2) D.ax2+bx+c=0
    【分析】利用一元二次方程的定义判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
    【解答】解:A、不是整式方程,是分式方程,故本选项不合题意;
    B、由原方程化简得﹣2x=0,未知数的最高次数是1,故本选项不合题意;
    C、由原方程可得x2﹣3x﹣6=0,符合一元二次方程的定义,故本选项符合题意.
    D、方程二次项系数a可能为0,故本选项不合题意;
    故选:C.
    4.下列关于x的一元二次方程中,没有实数根的是(  )
    A.x2﹣6x+1=0 B.2x2+2=x
    C.4x2+4x+1=0 D.x2﹣(m﹣1)x=3
    【分析】根据根的判别式的值的大小与零的关系来判断根的情况.没有实数根的一元二次方程,即判别式的值是负数的方程.
    【解答】解:A、△=36﹣4=32>0,方程有两个不相等的实数根;
    B、△=﹣15<0,方程没有实数根;
    C、△=0,方程有两个相等的实数根;
    D、△=(m﹣1)2+12>0,方程有两个不相等的实数根.
    故选:B.
    5.下列命题是真命题的是(  )
    A.两个锐角的和还是锐角
    B.全等三角形的对应边相等
    C.同旁内角相等,两直线平行
    D.等腰三角形既是轴对称图形,又是中心对称图形
    【分析】根据锐角的概念、全等三角形的性质、平行线的判定定理、轴对称图形和中心对称图形的概念判断即可.
    【解答】解:A、两个锐角的和还是锐角,是假命题,例如60°+60°=120°;
    B、全等三角形的对应边相等,是真命题;
    C、同旁内角合并,两直线平行,本选项说法是假命题;
    D、等腰三角形是轴对称图形,但不是中心对称图形,本选项说法是假命题;
    故选:B.
    6.如图,在△ABC中,∠ACB=90°,CH⊥AB,垂足为点H,AD平分∠BAC,与CH相交于点D,过点D作DE∥BC,与边AB相交于点E,那么下列结论中一定正确的是(  )

    A.DA=DE B.AC=EC C.AH=EH D.CD=ED
    【分析】延长ED交AC于F,先由平行线的性质得∠AFD=∠ACB=90°,∠DEH=∠B,再由角平分线的性质得DF=DH,∠DHE=90°,然后证明△CDF≌△EDH(ASA),得出CD=ED即可.
    【解答】解:一定正确的是CD=ED,理由如下:
    延长ED交AC于F,如图所示:
    ∵DE∥BC,
    ∴∠AFD=∠ACB=90°,∠DEH=∠B,
    ∴DF⊥AC,∠DFC=90°,
    ∵AD平分∠BAC,CH⊥AB,
    ∴DF=DH,∠DHE=90°,
    在△CDF和△EDH中,

    ∴△CDF≌△EDH(ASA),
    ∴CD=ED,
    故选:D.

    二.填空题
    7.化简:=  .
    【分析】根据最简二次根式的方法求解即可.
    【解答】解:==,故填.
    8.化简:(y≥0)= xy .
    【分析】依据二次根式有意义的条件,即可得到x的取值范围,再利用二次根式的性质化简即可.
    【解答】解:由x3y2≥0,可得x≥0,
    当y≥0时,==×=|xy|=xy,
    故答案为:xy.
    9.如果=1﹣a,那么a的取值范围是 a≤1 .
    【分析】先将被开方数化完全平方式,然后根据化简的结果来判断a的取值范围.
    【解答】解:由题意,知:=1﹣a;
    故a﹣1≤0,即a≤1.
    10.不等式x﹣3<x的解集是 x>﹣3﹣3 .
    【分析】利用不等式的基本性质,将不等式未知项和常数项各移到一边,解得x的解集.
    【解答】解:由x﹣3<x,得
    x﹣x<3,
    (﹣)x<3,
    x>,即x>﹣3﹣3.
    故答案是:x>﹣3﹣3.
    11.已知最简二次根式x与3是同类二次根式,那么x= ﹣2 .
    【分析】根据二次根式的意义,得到关于x的方程,求解即可.
    【解答】解:∵最简二次根式x与3是同类二次根式,
    ∴x+5=3.
    ∴x=﹣2.
    故答案为:﹣2.
    12.方程x2=x的根是 x1=0,x2=2 .
    【分析】移项,分解因式,即可得出两个一元一次方程,求出方程的解即可.
    【解答】解:x2=x,
    x2﹣x=0,
    x(x﹣1)=0,
    x=0,x﹣1=0,
    x1=0,x2=2.
    故答案为:x1=0,x2=2.
    13.在实数范围内因式分解:2x2﹣3x﹣1= 2(x﹣)(x﹣) .
    【分析】令原式为0求出x的值,即可确定出因式分解的结果.
    【解答】解:令2x2﹣3x﹣1=0,
    解得:x=,
    则原式=2(x﹣)(x﹣).
    故答案为:2(x﹣)(x﹣).
    14.方程3x2+4x﹣2=0的根的判别式的值为 40 .
    【分析】根据根的判别式等于b2﹣4ac,代入求值即可.
    【解答】解:∵a=3,b=4,c=﹣2,
    ∴△=b2﹣4ac=16+24=40.
    故答案为:40.
    15.某种商品原价800元,经过两次降价后售价为612元,其中第二次降价的百分率比第一次降价的百分率多5%,如果设第一次降价的百分率为x,那么根据题意所列出的方程为 800(1﹣x)(1﹣x﹣5%)=612 .(只需列出方程,无需求解)
    【分析】根据题意可以列出相应的方程,从而可以解答本题.
    【解答】解:设第一次降价百分率为x,根据题意可得:
    800(1﹣x)(1﹣x﹣5%)=612,
    故答案是:800(1﹣x)(1﹣x﹣5%)=612.
    16.命题“同位角相等,两直线平行”写成“如果…,那么…”的形式为 如果同位角相等,那么两直线平行 .
    【分析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.
    【解答】解:“同位角相等,两直线平行”的条件是:“同位角相等”,结论为:“两直线平行”,
    所以写成“如果…,那么…”的形式为:“如果同位角相等,那么两直线平行”.
    17.如图,已知AC=DB,要使得三角形ABC≌△DCB,还需添加一个条件,那么这个条件可以是 AB=DC或∠ACB=∠DBC .(只需填写一个条件即可)

    【分析】根据全等三角形的判定定理(SAS,SSS)判断即可.
    【解答】解:添加AB=DC,利用SSS可得△ABC≌△DCB;
    添加∠ACB=∠DBC,利用SAS可得△ABC≌△DCB;
    故答案为:AB=DC或∠ACB=∠DBC.
    18.如图,三角形纸片ABC中,∠A=75°,∠B=72°.将三角形纸片的一角折叠,使点C落在△ABC内,如果∠1=32°,那么∠2= 34 度.

    【分析】如图延长AE、BF交于点C′,连接CC′.首先证明∠1+∠2=2∠AC′B,求出∠AC′B即可解决问题.
    【解答】解:如图延长AE、BF交于点C′,连接CC′.

    在△ABC′中,∠AC′B=180°﹣72°﹣75°=33°,
    ∵∠ECF=∠AC′B=40°,∠1=∠ECC′+∠EC′C,∠2=∠FCC′+∠FC′C,
    ∴∠1+∠2=∠ECC′+∠EC′C+∠FCC′+∠FC′C=2∠AC′B=66°,
    ∵∠1=32°,
    ∴∠2=34°,
    故答案为:34.
    三.解答题
    19.(+2)﹣(﹣)
    【分析】根据二次根式的加减运算,先把每个二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并.
    【解答】解:原式=+﹣3+3
    =﹣+.
    20.解方程:(x+2)(x+1)=12.
    【分析】根据因式分解法即可求出答案.
    【解答】解:∵(x+2)(x+1)=12,
    ∴x2+3x﹣10=0,
    ∴(x+5)(x﹣2)=0,
    ∴x=﹣5或x=2.
    21.用配方法解方程:2x2+6x﹣1=0.
    【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.
    【解答】解:∵2x2+6x=1,
    ∴x2+3x=,
    则x2+3x+=+,即(x+)2=,
    ∴x+=±,
    ∴x1=﹣+,x2=﹣﹣.
    22.先化简,再求值:[+]÷,其中x=1,y=2.
    【分析】先依据二次根式的运算法则化简,再把x,y的值代入计算即可.
    【解答】解:[+]÷
    =[﹣]÷
    =×
    =×

    =,
    当x=1,y=2时,原式==.
    23.如图,已知:AB⊥BD,AC⊥CD,且∠BAD=∠CAD.求证:AD⊥BC.

    【分析】由“AAS”可证△ABD≌△ACD,可得AB=AC,由等腰三角形的性质可得结论.
    【解答】证明:∵AB⊥BD,AC⊥CD,
    ∴∠ABD=∠ACD,
    在△ABD和△ACD中,

    ∴△ABD≌△ACD(AAS),
    ∴AB=AC,
    又∵∠BAD=∠CAD,
    ∴AD⊥BC.
    24.已知关于x的一元二次方程(m+1)x2﹣3x+2=0(m为常数).
    (1)如果方程有两个不相等的实数根,求m的取值范围;
    (2)如果方程有两个相等的实数根,求m的值;
    (3)如果方程没有实数根,求m的取值范围.
    【分析】(1)根据根的判别式△=b2﹣4ac>0,m+1≠0来求m的取值范围;
    (2)方程有两个相等的实数根,则△=b2﹣4ac=0,则可求出答案;
    (3)方程没有实数根,则△=b2﹣4ac<0,可求出答案.
    【解答】解:(1)∵方程有两个不相等的实数根,
    ∴△=b2﹣4ac=(﹣3)2﹣4×2×(m+1)=﹣8m+1>0,且m+1≠0,
    ∴m<且m≠﹣1,
    ∴m的取值范围是m<且m≠﹣1,
    (2)∵方程有两个相等的实数根,
    ∴△=b2﹣4ac=﹣8m+1=0,
    ∴m=.
    (3)∵方程没有实数根,
    ∴△=b2﹣4ac=﹣8m+1<0,
    ∴m>.
    ∴m的取值范围是m>.
    25.某建筑工程队,在工地一边的靠墙处(墙的长度为70米),用120米长的铁栅栏围成一个所占地面为长方形的临时仓库,铁栅栏只围三边,并且在平行于墙的一边开一扇宽为2米的门,如果围成的长方形临时仓库的面积为1800平方米,求长方形的两条边的长.
    【分析】设垂直于墙的一边长为x米,则平行于墙的一边长为(120+2﹣2x)米,根据矩形的面积公式结合临时仓库的面积为1800平方米,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.
    【解答】解:设垂直于墙的一边长为x米,则平行于墙的一边长为(120+2﹣2x)米,
    依题意,得:x(120+2﹣2x)=1800,
    整理,得:x2﹣61x+900=0,
    解得:x1=25,x2=36,
    当x=25时,120+2﹣2x=72>70,不合题意,舍去;
    当x=36时,120+2﹣2x=50<70,符合题意.
    答:长方形的长为50米,宽为36米.
    26.如图,已知:在△ABC中,点D是边AC的中点,点E是边BC的延长线上一点,过点A作BE的平行线与线段ED的延长线相交于点F,联结AE.
    (1)求证:AF=CE;
    (2)联结CF,交边AB于点G,如果CF⊥AB,求证:∠ABC+∠AEB=90°.

    【分析】(1)先根据线段中点的定义得AD=CD,再根据平行线的性质得到,∠AFE=∠CED,∠DAF=∠DCE,最后根据全等三角形的判定定理和性质定理即可求解;
    (2)先根据平行四边形的判定与性质得到CF∥AE,再根据平行线的性质得到AE⊥AB,然后根据直角三角形的两锐角互余即可得证.
    【解答】证明:(1)∵点D是边AC的中点,
    ∴AD=CD,
    ∵AF∥BE,
    ∴∠AFE=∠CED,∠DAF=∠DCE,
    在△ADF和△CDE中,

    ∴△ADF≌△CDE(AAS),
    ∴AF=CE.
    (2)∵AF=CE,AF∥BE,
    ∴四边形AECF是平行四边形,
    ∴CF∥AE,
    ∵CF⊥AB,
    ∴AE⊥AB,
    ∴∠BAE=90°,
    ∴∠ABC+∠AEB=90°.
    27.如图,已知:△ABC是等边三角形,CE是△ABC的外角∠ACM的平分线,点D为射线BC上一点,且∠ADE=∠ABC,DE与CE相交于点E.
    (1)如图1,如果点D在边BC上,求证:AD=DE;
    (2)如图2,如果点D在边BC的延长线上,那么(1)的结论“AD=DE”还能成立吗?请说明理由.
    (3)如果△ABC的边长为4,且∠DAC=30°,请直接写出线段BD的长度.(无需写出解题过程)

    【分析】(1)首先在AC上截取CN=CD,由△ABC为等边三角形,易得△CDN是等边三角形,继而可证得△ADN≌△EDC,即可得AD=DE;
    (2)首先在AC延长线上截取CN=CD,由△ABC为等边三角形,易得△CDN是等边三角形,继而可证得△ADN≌△EDC,即可得AD=DE;
    (3)分两种情况讨论,由直角三角形的性质和等边三角形的性质可求解.
    【解答】证明:(1)在AC上截取CN=CD,

    ∵△ABC是等边三角形,
    ∴∠ACB=60°,
    ∴△CDN是等边三角形,
    ∴ND=CD=CN,∠CND=∠CDN=60°,
    ∴∠AND=120°,
    ∵∠ADE=60°,
    ∴∠ADE=∠NDC,
    ∴∠ADN=∠EDC,
    ∵CE平分∠ACM,
    ∴∠ACE=60°,
    ∴∠DCE=120°=∠AND,
    在△ADN和△EDC中,

    ∴△ADN≌△EDC(ASA),
    ∴AD=ED;
    (2)在AC的延长线上截取CN=CD,

    ∵△ABC是等边三角形,
    ∴∠ACB=60°,
    ∴∠DCN=60°,
    ∴△CDN是等边三角形,
    ∴ND=CD=CN,∠CND=∠CDN=60°,
    ∵CE平分∠ACM,
    ∴∠ACE=∠DCE=60°,
    ∴∠ECD=∠AND,
    ∵∠ADE=60°,
    ∴∠ADE=∠CDN,
    ∴∠ADN=∠EDC,
    在△ADN和△EDC中,

    ∴△ADN≌△EDC(ASA),
    ∴AD=DE;
    (3)当点D在线段BC上时,
    ∵△ABC是等边三角形,∠DAC=30°=∠BAC,
    ∴BD=BC=2,
    当点D在射线CM上时,
    ∵∠DAC=30°,∠ACB=60°=∠DAC+∠ADC,
    ∴∠DAC=∠ADC=30°,
    ∴AC=DC=4,
    ∴BD=8,
    综上所述:BD的值2或8.





    相关试卷

    上海市闵行区2023-2024学年八年级上学期期中考试数学试卷:

    这是一份上海市闵行区2023-2024学年八年级上学期期中考试数学试卷,共5页。

    上海市闵行区莘光中学2021-2022学年八年级上学期期中数学试卷:

    这是一份上海市闵行区莘光中学2021-2022学年八年级上学期期中数学试卷,共4页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2018-2019学年上海市闵行区八年级(上)期中数学试卷 解析版:

    这是一份2018-2019学年上海市闵行区八年级(上)期中数学试卷 解析版,共16页。试卷主要包含了选择题,填空题,简答题,解答题,综合题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map