终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    新人教版五六年级数学(下册)各单元知识要点A

    立即下载
    加入资料篮
    新人教版五六年级数学(下册)各单元知识要点A第1页
    新人教版五六年级数学(下册)各单元知识要点A第2页
    新人教版五六年级数学(下册)各单元知识要点A第3页
    还剩11页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新人教版五六年级数学(下册)各单元知识要点A

    展开

    这是一份新人教版五六年级数学(下册)各单元知识要点A,共14页。教案主要包含了圆柱,圆锥,圆柱和圆锥的关系等内容,欢迎下载使用。
    1、负数的由来:
    为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负
    2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。
    若一个数小于0,则称它是一个负数。
    负数有无数个,其中有(负整数,负分数和负小数)
    负数的写法:
    数字前面加负号“-”号,不可以省略
    例如:-2,-5.33,-45,-2/5
    正数:
    大于0的数叫正数(不包括0),数轴上0右边的数叫做正数
    若一个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正分数和正小数)
    正数的写法:数字前面可以加正号“+”号,也可以省略不写。
    例如:+2,5.33,+45,2/5
    4、0 既不是正数,也不是负数,它是正、负数的分界限
    负数都小于0,正数都大于0,负数都比正数小,正数都比负数大
    5、数轴:
    6、比较两数的大小:
    ①利用数轴:
    负数<0<正数 或 左边<右边
    ②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大
    1/3>1/6 -1/3<-1/6
    第二单元 百分数二
    (一)、折扣和成数
    1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。
    几折就是十分之几,也就是百分之几十。例如:八折=8/10=80﹪,
    六折五=6.5/10=65/100=65﹪
    解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
    商品现在打八折:现在的售价是原价的80﹪
    商品现在打六折五:现在的售价是原价的65﹪
    2、成数:
    几成就是十分之几,也就是百分之几十。例如:一成=1/10=10﹪
    八成五=8.5/10=85/100=80﹪
    解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
    这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪
    今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪
    (二)、税率和利率
    1、税率
    (1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
    (2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
    (3)应纳税额:缴纳的税款叫做应纳税额。
    (4)税率:应纳税额与各种收入的比率叫做税率。
    (5)应纳税额的计算方法:
    应纳税额=总收入×税率
    收入额=应纳税额÷税率
    2、利率
    (1)存款分为活期、整存整取和零存整取等方法。
    (2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
    (3)本金:存入银行的钱叫做本金。
    (4)利息:取款时银行多支付的钱叫做利息。
    (5)利率:利息与本金的比值叫做利率。
    (6)利息的计算公式:
    利息=本金×利率×时间
    利率=利息÷时间÷本金×100%
    (7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:
    税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)
    税后利息=本金×利率×时间×(1-利息税率)
    购物策略:
    估计费用:根据实际的问题,选择合理的估算策略,进行估算。
    购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案
    学后反思:做事情运用策略的好处
    第三单元 圆柱和圆锥
    一、圆柱
    1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
    圆柱也可以由长方形卷曲而得到。
    两种方式:
    1.以长方形的长为底面周长,宽为高;
    2.以长方形的宽为底面周长,长为高。
    其中,第一种方式得到的圆柱体体积较大。
    2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
    3、圆柱的特征:
    (1)底面的特征:圆柱的底面是完全相等的两个圆。
    (2)侧面的特征:圆柱的侧面是一个曲面。
    (3)高的特征 :圆柱有无数条高
    4、圆柱的切割:
    ①横切:切面是圆,表面积增加2倍底面积,即S 增 =2πr²
    ②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh
    5、圆柱的侧面展开图:
    ①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形
    ②不沿着高展开,展开图形是平行四边形或不规则图形
    ③无论怎么展开都得不到梯形
    6、圆柱的相关计算公式:
    底面积 :S底=πr²
    底面周长:C底=πd=2πr
    侧面积 :S侧=2πrh
    表面积 :S表=2S底+S侧=2πr²+2πrh
    体积 :V柱=πr²h
    考试常见题型:
    ①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长
    ②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积
    ③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积
    ④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积
    ⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积
    以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算
    无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积
    烟囱通风管的表面积=侧面积
    只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装
    侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池
    侧面积+两个底面积:油桶、米桶、罐桶类
    二、圆锥
    1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。
    2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高
    3、圆锥的特征:
    (1)底面的特征:圆锥的底面一个圆。
    (2)侧面的特征:圆锥的侧面是一个曲面。
    (3)高的特征:圆锥有一条高。
    4、圆锥的切割:
    ①横切:切面是圆
    ②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,
    即S增=2rh
    5、圆锥的相关计算公式:
    底面积:S底=πr²
    底面周长:C底=πd=2πr
    体积:V锥=1/3πr²h
    考试常见题型:
    ①已知圆锥的底面积和高,求体积,底面周长
    ②已知圆锥的底面周长和高,求圆锥的体积,底面积
    ③已知圆锥的底面周长和体积,求圆锥的高,底面积
    以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算
    三、圆柱和圆锥的关系
    1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
    2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
    3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
    4、圆柱与圆锥等底等高 ,体积相差2/3Sh
    题型总结
    ①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积
    分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化
    分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比
    ②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)
    ③横截面的问题
    ④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体
    ⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的 问题,注意不要乘以1/3
    第四单元 比例
    1、比的意义
    (1)两个数相除又叫做两个数的比
    (2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
    (3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
    (4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
    (5)比的后项不能是零。
    (6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
    2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
    3、求比值和化简比:
    求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
    根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。
    4、按比例分配:
    在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。
    方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
    5、比例的意义:表示两个比相等的式子叫做比例。
    组成比例的四个数,叫做比例的项。
    两端的两项叫做外项,中间的两项叫做内项。
    6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。
    7、比和比例的区别
    (1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
    (2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
    8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
    用字母表示x/y=k(一定)
    9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
    用字母表示x×y=k(一定)
    10、判断两种量成正比例还是成反比例的方法:
    关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。
    11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
    12、比例尺的分类
    (1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺
    13、图上距离:
    图上距离/实际距离=比例尺
    实际距离×比例尺=图上距离
    图上距离÷比例尺=实际距离
    14、应用比例尺画图的步骤:
    (1)写出图的名称、
    (2)确定比例尺;
    (3)根据比例尺求出图上距离;
    (4)画图(画出单位长度)
    (5)标出实际距离,写清地点名称
    (6)标出比例尺
    15、图形的放大与缩小:形状相同,大小不同。
    16、用比例解决问题:
    根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。
    17、常见的数量关系式:(成正比例或成反比例)
    单价×数量=总价
    单产量×数量=总产量
    速度×时间=路程
    工效×工作时间=工作总量
    18、
    已知图上距离和实际距离可以求比例尺。
    已知比例尺和图上距离可以求实际距离。
    已知比例尺和实际距离可以求图上距离。
    计算时图距和实距单位必须统一。
    19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?
    答:每天播种的公顷数×天数=播种的总公顷数
    已知播种的总公顷数一定,就是每天播种的公顷数和要用的天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。
    第五单元 数学广角-鸽巢问题
    1、鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用
    ①什么是鸽巣原理, 先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法,如下表
    无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”。 这个结论是在“任意放法”的情况下, 得出的一个“必然结果”。
    类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子
    如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信
    我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式
    ②利用公式进行解题:
    物体个数÷鸽巣个数=商……余数
    至少个数=商+1
    2、摸2个同色球计算方法。
    ①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。
    物体数=颜色数×(至少数-1)+1
    ②极端思想: 用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
    ③公式:
    两种颜色:2+1=3(个)
    三种颜色:3+1=4(个)
    四种颜色:4+1=5(个)
    放法
    盒子1
    盒子2
    1
    3
    0
    2
    2
    1
    3
    1
    2
    4
    0
    3

    相关教案

    新人教版五年级数学(下)各单元知识要点A:

    这是一份新人教版五年级数学(下)各单元知识要点A,共17页。教案主要包含了体积单位换算等内容,欢迎下载使用。

    人教版五年级数学下册各单元知识点总结:

    这是一份人教版五年级数学下册各单元知识点总结,共15页。教案主要包含了长方体,长方体和正方体的表面积,长方体和正方体的体积,约分,分数和小数的互化等内容,欢迎下载使用。

    新人教版二年级数学下册各单元知识要点:

    这是一份新人教版二年级数学下册各单元知识要点,共21页。教案主要包含了第4题,第8题等内容,欢迎下载使用。

    数学口算宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map