|教案下载
终身会员
搜索
    上传资料 赚现金
    小学数学总复习归类讲解及训练全套教案(共34页)
    立即下载
    加入资料篮
    小学数学总复习归类讲解及训练全套教案(共34页)01
    小学数学总复习归类讲解及训练全套教案(共34页)02
    小学数学总复习归类讲解及训练全套教案(共34页)03
    还剩25页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    小学数学总复习归类讲解及训练全套教案(共34页)

    展开
    这是一份小学数学总复习归类讲解及训练全套教案(共34页),共28页。教案主要包含了筐梨比一筐苹果轻的部分等内容,欢迎下载使用。

    (一)
    主要内容
    求一个数比另一个数多(少)百分之几、纳税问题
    学习目标
    1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方 法,并能正确解决相关的实际问题。
    2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分 数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析 问题和解决问题的能力。
    3、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
    4、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
    5、培养和解决简单的实际问题的能力,体会生活中处处有数学。
    考点分析
    1、一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数。
    2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额 = 收入 ×
    税率
    典型例题
    例 1、(解决“求一个数比另一个数多百分之几”的实际问题)
    向阳客车厂原计划生产客车 5000 辆,实际生产 5500 辆。实际比计划多生产百分之几?
    分析与解:要求“实际比计划多生产百分之几”,就是求实际比计划多生产的辆数占计划产量的百分 之几,把原计划产量看作单位“1”。两者之间的关系可用线段图表示。
    计划产量
    5000 辆实际比计划多的
    实际产量
    解答:方法 1:
    5500 辆
    5500 – 5000 = 500(辆)……实际比计划多生产 500 辆
    500 ÷ 5000 = 0.1 = 10%……实际比计划多生产百分之几 方法 2:
    5500 ÷ 5000 = 110%……实际产量相当于原计划的 110%
    110% - 100% =10%……实际比计划多生产百分之几
    答:实际比计划多生产 10%。
    例 2、(解决“求一个数比另一个数少百分之几”的实际问题)
    向阳客车厂原计划生产客车 5000 辆,实际生产 5500 辆。计划比实际少生产百分之几?
    分析与解:要求“计划比实际少生产百分之几”,就是求计划比实际少生产的辆数占实际产量的百分 之几,把实际产量看作单位“1”。两者之间的关系可用线段图表示。
    5000 辆
    计划产量
    实际产量
    解答:方法 1:
    5500 辆
    计划比实际少的
    点评:想一想,在分数乘法应用题中的最基本的数量关系式:“单位 1 × 分率 = 分率对应的 量”,如果和百分数应用题结合起来,求一种量比另一种量多(少)百分之几,实际上就 是求分率。就用“多(少)的量 ÷ 单位 1”。
    例 3、(难点突破)
    一筐苹果比一筐梨重 20%,那么一筐梨就比一筐苹果轻 20%
    分析与解:苹果比梨重 20%,表示苹果比梨重的部分占梨的 20%,把梨的质量看作单位“1”;而梨 比苹果轻 20%则表示梨比苹果轻的部分占苹果的 20%,把苹果的质量看作单位“1”,两 个单位“1”不同,切忌将两个问题混为一谈。一筐苹果比一筐梨重 20%,是把梨看作单 位“1”,梨有 100 份,苹果就是 100 + 20 = 120 份;一筐梨比一筐苹果轻百分之几 = 一 筐梨比一筐苹果轻的部分 ÷ 苹果 = (120 - 100)÷ 120≈16.7%
    答:一筐苹果比一筐梨重 20%,那么一筐梨就比一筐苹果轻 16.7%
    点评:在求一个数比另一个数多(少)百分之几的百分数应用题中,关键还是要找准单位“1” 的量。从结论可以得出“一个数比另一个数多百分之几,另一个数就比一个数少百分之几。” 这句话是错的。为什么呢?把两个百分之几比较一下,就可以得出这两个百分之几对应的 量是一个数比另一个数多的量或另一个数比一个数少的量,而这两种说法是相同的,也就 表示的是同一个量;而单位“1”一个是梨,一个是苹果,所以这两个百分之几是不可能 相等的。
    例 4、(考点透视)
    一种电子产品,原价每台 5000 元,现在降低到 3000 元。降价百分之几?
    分析与解:降低到 3000 元,即现价为 3000 元,说明降低了 2000 元。求降价百分之几,就是求降低 的价格占原价的百分之几。
    5500 – 5000 = 500(辆)
    ……
    计划比实际少生产 500 辆
    500 ÷ 5500 ≈ 9.1%
    ……
    计划比实际少生产百分之几
    方法 2:
    5500 ÷ 5500 ≈ 90.9%
    ……
    计划产量相当于实际的 90.9%
    100% - 90.9% ≈ 9.1%
    ……
    计划比实际少生产百分之几
    答:计划比实际少生产 9.1%。
    5000 – 3000 = 2000(元)
    2000 ÷ 5000 = 40%
    答:降价 40﹪。
    例 5、(考点透视)
    一项工程,原计划 10 天完成,实际 8 天就完成了任务,实际每天比原计划多修百分之几?
    1
    分析与解:根据“原计划 10 天完成”,可以得到:原计划每天完成这项工程的;根据“实际 8 天
    10
    1
    完成”,可以得到:实际每天完成这项工程的。用“实际比原计划每天多完成的量 ÷
    8
    原计划每天完成的量”,就可以求出实际每天多修百分之几。
    111
    (-) ÷= 25%
    81010
    答:实际每天比原计划多修 25%。
    点评:找准解决问题的数量关系式是解答好这一题的关键,题目中要求的是每天完成的任务 量,而不能用 10 和 8 去求,因为 10 和 8 是工作时间,在解答时容易发生错误。
    例 6、(应纳税额的计算方法)
    益民五金公司去年的营业总额为 400 万元。如果按营业额的 3%缴纳营业税,去年应缴纳营业 税多少万元?
    分析与解:如果按营业额的 3%缴纳营业税,是把营业额看作单位“1”。 缴纳营业税占营业额的 3%,即 400 万元的 3%。求一个数的百分之几是多少,也用乘法计算。计算时可将百分 数化成分数或小数来计算。
    3
    400×3% = 400×= 12(万元)
    100
    或 400×3% = 400×0.03 = 12(万元)
    答:去年应缴纳营业税 12 万元。
    点评:在现实社会中,各种税率是不一样的。应纳税额的计算从根本上讲是求一个数的百分之 几是多少。
    例 7、(和应纳税额有关的简单实际问题)
    王叔叔买了一辆价值 16000 元的摩托车。按规定,买摩托车要缴纳 10%的车辆购置税。王叔叔 买这辆摩托车一共要花多少钱?
    分析与解:王叔叔买这辆摩托车所需的钱应包含购买价和 10%的车辆购置税两部分,而车辆购置税 是占摩托车购买价的 10%,可先算出要缴纳的车辆购置税。也可以这样想:车辆购置税 占购买价的 10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价 的(1 + 10%),即求 16000 元的 110%是多少,也用乘法计算。
    方法 1:16000 ×10% + 16000 = 1600 + 16000 = 17600(元) 方法 2:16000 ×(1 + 10%) =16000 ×1.1 = 17600(元)
    答:王叔叔买这辆摩托车一共要花 17600 元钱。
    例 8、扬州某风景区 2007 年“十一”黄金周接待游客 9 万人次,门票收入达 270
    万元。按门票的 5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税 0.45 万元。
    分析与解:营业税是按门票的 5%缴纳,是占门票收入的 5%,而不是占游客人数的 5%
    答:“十一”黄金周期间应缴纳营业税 13.5 万元。
    模拟试题
    一、填空。
    1、篮球个数是足球的 125%,篮球比足球多()%,足球个数是篮球的()%,足球个数 比篮球少()%。
    2、排球个数比篮球多 18%,排球个数相当于篮球的()%。
    3、足球个数比篮球少 20%。排球个数比篮球多 18%,()球个数最多,()球个数最少。
    4、果园里种了 60 棵果树,其中 36 棵是苹果树。苹果树占总棵数的()%,其余的果树占总 棵数的()%。
    5、女生人数占全班的百分之几 = ()÷ () 杨树的棵数比柏树多百分之几 = ()÷ () 实际节约了百分之几 = ()÷ () 比计划超产了百分之几 = ()÷ ()
    6、20 的 40%是(),36 的 10%是(),50 千克的 60%是()千克,800 米的 25% 是()米。
    7、进口价a元的一批货物,税率和运费都是货物价值的 10%,这批货物的成本是()元。
    二、解决实际问题
    1、白兔有 25 只,灰兔有 30 只。灰兔比白兔多百分之几?
    2、四美食盐厂上月计划生产食盐 450 吨,实际生产了 480 吨。实际比计划多生产了百分之几?
    3、小明家八月份用电 80 千瓦时,小亮家比小明家节约 10 千瓦时,小亮家比小明家八月份节约
    用电百分之几?
    4、某化肥厂 9 月份实际生产化肥 5000 吨,比计划超产 500 吨。比计划超产百分之几?
    5、蓝天帽业厂去年收入总额达 900 万元,按国家的税率规定,应缴纳 17%的增值税。一共要 缴纳多少万元的增值税?
    6、爸爸买了一辆价值 12 万元的家用轿车。按规定需缴纳 10%的车辆购置税。爸爸买这辆车共 需花多少钱?
    (二)
    主要内容:
    应用百分数解决实际问题:利息、折扣问题
    学习目标:
    1、了解储蓄的含义。
    2、理解本金、利率、利息的含义。
    3、掌握利息的计算方法,会正确地计算存款利息。
    4、进一步掌握折扣的有关知识及计算方法。
    5、使学生进一步积累解决问题的经验,增强数学的应用意识。
    考点分析
    1、存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的 百分率叫做利率。
    2、利息=本金×利率×时间。
    3、几折就是十分之几,也就是百分之几十。
    4、商品现价 = 商品原价 × 折数。
    四、典型例题
    例 1、(解决税前利息)李明把 500 元钱按三年期整存整取存入银行,到期后应得利息多少元?
    存期(整存整取)
    年利率
    一年
    3.87%
    二年
    4.50%
    三年
    5.22%
    分析与解:根据储蓄年利率表,三年定期年利率 5.22%。 税前应得利息 = 本金 × 利率 × 时间
    500 × 5.22% × 3 = 78.3(元)
    答:到期后应得利息 78.3 元。
    例 2、(解决税后利息)
    根据国家税法规定,个人在银行存款所得的利息要按 5%的税率缴纳利息税。例 1 中纳税 后李明实得利息多少元?
    分析与解:从应得利息中扣除利息税剩下的就是实得利息。 税后实得利息 = 本金 × 利率 × 时间 ×(1 - 5%)
    500 × 5.22% × 3 = 78.3(元)…… 应得利息
    78.3 × 5%= 3.915(元)…… 利息税
    78.3 – 3.915 = 74.385 ≈ 74.39(元)…… 实得利息 或者500 × 5.22% × 3 × (1 - 5%) = 74.385(元)≈ 74.39(元)
    答:纳税后李明实得利息 74.39 元。
    例 3、方明将 1500 元存入银行,定期二年,年利率是 4.50%。两年后方明取款时要按 5%缴纳 利息税,到期后方明实得利息多少元?
    错误解答:1500 × 4.50% ×(1 - 5%) = 64.125(元)≈ 64.13(元) 分析原因:税后实得利息 = 本金 × 利率 × 时间 ×(1 - 5%),这里漏乘了时间。 正确解答:1500 × 2 × 4.50% ×(1 - 5%) = 128.25(元) 答:到期后方明实得利息 128.25 元。
    点评:求利率根据实际情况有时要扣掉利息税,根据国家规定利息税的税率是 5%,所以利息 分税前利息和税后利息,在做题时要注意区分。但也有一些是不需要缴利息税的,比如: 国家建设债券、教育储蓄等。
    例 4、(求折扣)一本书现价 6.4 元,比原价便宜 1.6 元。这本书是打几折出售的? 分析与解:打了几折是求实际售价是原价的百分之几,只要用实际售价除以原价。 6.4 + 1.6 = 8(元)
    6.4 ÷ 8 = 80% = 八折
    答:这本书是打八折出售的。 点评:几折就是百分之几十,几几折就是百分之几十几,同一商品打的折数越低,售价也就越
    低。在折数的题目中,打几折就是按原价的百分之几十出售,它并不代表增加或减少的 数额。
    例 5、(已知折扣求原价)
    “国庆”商场促销,一套西服打八五折出售是 1020 元,这套西服原价多少元?
    分析与解:打八五折出售,即实际售价相当于原价的 85%。已知原价的 85%是 1020 元,要求 原价是多少,可以列方程解答。
    原价 × 85% = 实际售价
    解:设这套西服原价x元。
    x × 85% = 1020
    x = 1020 ÷ 85% x = 1200
    检验:(1)用现价除以原价看是否打了八五折。
    1020 ÷ 1200 = 0.85 = 85%
    (2)看原价的 85%是不是 1020 元。 1200 × 85% = 1020(元)
    经检验,答案符合题意。
    答:这套西服原价 1200 元。
    例 6、一台液晶电视 6000 元,若打七五折出售,可降价 2000 元。
    分析原因:6000 元为原价,打七五折出售,要先算出实际售价再相减,或者先算出降价部分占 原价的 25%。
    正确解答:6000 - 6000×75% = 1500(元)
    或 6000×(1 - 75%) = 1500(元)
    答:可降价 1500 元。
    例 7、(和应纳税额有关的简单实际问题)
    一批电冰箱,原来每台售价 2000 元,现促销打九折出售,有一顾客购买时,要求再打九折,如 果能够成交,售价是多少元? 分析与解:“促销打九折出售”就是按原价的百分之九十出售,用“原价×90%”,“再打九折”
    是在促销价的基础上打九折,要用促销价乘 90%。 2000× 90% × 90%
    = 1800× 90%
    = 1620(元)
    答:如果能够成交,售价是 1620 元。
    点评:题目的关键是“再打九折”表示的意思是在促销价的基础上再打九折,单位“1”的 量是促销价,即原价打九折后的价钱,这是易错点,要多加注意。
    例 8、(考点透视)
    商店以 40 元的价钱卖出一件商品,亏了 20%。这件商品原价多少元,亏了多少元?
    分析与解:以 40 元的价钱卖出,说明实际售价是 40 元;亏了 20%,即亏了原价的 20%,因此 实际售价相当于原价的(1 - 20%)。
    解:设这件商品原价x元。
    x × (1 - 20%) = 40
    x × 80% = 40
    x = 50
    50 × 20% = 10(元)
    答:这件商品原价 50 元,亏了 10 元。
    例 9、(考点透视)
    某商店同时卖出两件商品,每件各得 30 元,其中一件盈利 20%,另一件亏本 20%。这个商店 卖出这两件商品总体上是盈利还是亏本?具体是多少?
    分析与解:盈利 20%,即售出价是成本价的(1 + 20%);亏本 20%,即售出价是成本价的(1
    - 20%)。两件商品的售出价都是 30 元,可分别算出两件商品的成本价。 30 ÷(1 + 20%)= 25(元)
    30 ÷(1 - 20%)= 37.5(元)
    25 + 37.5 = 62.5(元)
    62.5 – 60 = 2.5(元)
    答:这个商店卖出这两件商品总体上是亏本,亏本 2.5 元。
    模拟试题
    1、李叔叔于 2000 年 1 月 1 日在银行存了活期储蓄 1000 元,如果每月的利率是 0.165%,存款 三个月时,可得到利息多少元?本金和利息一共多少元?
    2、叔叔今年存入银行 10 万元,定期二年,年利率 4.50% ,二年后到期,扣除利息税 5% ,得到的 利息能买一台 6000 元的电脑吗?
    3、小华妈妈是一名光荣的中国共产党员,按党章规定,工资收入在 400-600 元的,每月党费应缴纳 工资总额的 0.5%,在 600-800 元的应缴纳 1%,在 800-1000 元的,应缴纳 1.5%,在 1000 以上的 应缴纳 2%,小华妈妈的工资为 2400 元,她这一年应缴纳党费多少元?
    4、填空:
    5、只列式不计算。
    ①买一件 T 恤衫,原价 80 元,如果打八折出售是多少元?
    ②有一种型号的手机,原价 1000 元,现价 900 元,打几折出售?
    八折=(
    )%
    九五折=(
    )%
    40% =(
    )折
    75% = (
    )折
    ③老师在商店里花了 56 元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售。这条牛仔裤 原价多少元?
    6、算出折数。
    ⑴在日常生活中打“折”现象随处可见。这儿有一家快餐店也在搞促销,你能算出这些美食分 别打几折吗?每人可任选一种计算一下。
    ①食品原价 4 元,现价 3 元。
    ②食品原价 5 元,现价 4 元。
    ③食品原价 10 元,现价 7 元。 7、常熟新开了一家永乐生活电器,“十·一”节日期间,那里的商品降价幅度很大。有一种款式的
    MP3,原价 280 元,现在打三折出售。根据这个信息,你想计算什么?
    ①现价多少元?
    ②现价比原价便宜了多少元?
    改编:(1)有一种款式的 MP3,打三折出售是 84 元,原价多少元?
    (2)有一种款式的 MP3,打三折出售比原价便宜了 196 元,原价多少元?
    8、一种矿泉水,零售每瓶卖 2 元,生产厂家为感谢广大顾客对产品的厚爱,特开展“买四赠一” 大酬宾活动,生产厂家的做法优惠了百分之几? (注意解题策略的多样性。)
    9、一辆自行车 200 元,在原价基础上打八折,小明有贵宾卡,还可以再打九折,小明买这辆车 花了多少钱?
    10、小红在书店买了两本打八折出售的书,共花了 12 元,小红买这两本书便宜了多少钱。
    (三)
    主要内容
    列方程解稍复杂的百分数实际问题
    学习目标
    1、引导学生在已学会的一些基本的百分数实际问题的基础上,引出列方程解一些稍复杂的百分 数实际问题的方法。
    2、能根据题中的信息,熟练地找出基本的数量关系,培养学生的分析解题能力。
    3、通过练习,沟通百分数和分数的联系,提高学生解决相关问题的能力。
    考点分析
    1、解答稍复杂的百分数应用题和稍复杂的分数应用题的解题思路、解题方法完全相同。
    2、用字母或含有字母的式子表示题中两个未知的数量,找出数量间的相等关系。根据求一个数 的百分之几是多少用乘法列方程求解,或者根据除法的意义,直接解答。
    3、“已知比一个数多(少)百分之几的数是多少,求这个数”的实际问题,可以根据数量间的 相等关系列方程求解;或者根据除法的意义,直接解答。
    4、灵活运用本单元所学知识,、解决稍复杂的百分数实际问题,沟通分数、百分数应用题之间 的联系。
    典型例题
    例 1、(列方程解答和倍问题)
    一根绳子长 48 米,截成甲、乙两段,其中乙绳长度是甲绳的 60%。甲、乙两绳各长多少米?
    分析与解:乙绳长度是甲绳的 60%,把甲绳长度看作单位“1”。
    x米
    甲绳
    ¦
    ( )米¦48 米
    乙绳
    乙绳是甲绳的 60%
    等量关系式:甲绳长度 + 乙绳长度 = 总长度
    解答:设甲绳长x米,则乙绳长 60%x米。 x + 60%x = 48
    1.6x = 48
    x = 30
    60%x = 30 × 60% = 18
    答:甲绳长 30 米,则乙绳长 18 米。
    检验:30 + 18 = 48(米),符合甲、乙两绳共长 48 米。 18 ÷ 30 = 60%,符合乙绳长度是甲绳的 60%。
    例 2、(列方程解答差倍问题)
    体育馆内排球的个数是篮球的 75%,篮球比排球多 6 个。篮球和排球各有多少个?
    分析与解:排球的个数是篮球的 75%,是把篮球个数看作单位“1”。
    x个
    篮球
    ¦
    ()个
    ¦多 6 个
    排球
    排球的个数是篮球的 75%
    等量关系式:篮球 – 排球 = 6 个
    解答:设篮球有x个,则排球有 75%x个。 x - 75%x = 6
    0.25x = 6
    x = 24
    75%x = 24 × 0.75 = 18
    答:篮球有 24 个,排球有 18 个。 你会自己检验吗?
    检验:24 - 18 = 6(个),符合篮球比排球多 6 个。
    18 ÷ 24 = 75%,符合排球的个数是篮球的 75%。
    点评:在列方程解答和倍、差倍问题的题目时,要注意找准单位“1”的量,通常情况下设单位“1” 的量为x,再用另一个量和单位“1”之间的关系,用含有x的式子表示出另一个量,最后 根据它们的和或差列出方程。
    例 3、六年级男生比女生少 40 人,六年级女生人数相当于男生人数的 140%,六年级男生有多 少人?
    错误解法:设:女生有x人,男生就有 140%x人。 140%x - x = 40
    0.4x = 40
    x = 100
    140%x = 100 × 1.4 = 140
    分析与解:根据“六年级女生人数相当于男生人数的 140%”,可以把男生人数看作单位“1” 的量,设男生人数为x人,女生人数就是 140%x人,再根据“六年级男生比女生少 40 人”,可以得出数量关系式:“女生人数 – 男生人数 = 40”,根据此数量关系式列出 方程。
    正确解答:设男生有x人,女生就有 140%x人。 140%x - x = 40
    0.4x = 40
    x = 100
    答:男生有 100 人。
    点评:解错此题的原因是单位“1”的量找错了,要记住找单位“1”的量时候,首先要去找分率
    (百分率),因为没有分率就没有单位“1”的量,就不能看到“比”,而“比”后面的那个 量就是单位“1”的量。
    例 4、(列方程解决“已知比一个数少百分之几的数是多少,求这个数”的百分数实际问题)
    白兔有 36 只,比灰兔少 20%。灰兔有多少只?
    分析与解:白兔比灰兔少 20%,把灰兔看作单位“1”。
    ?只
    灰兔
    ¦
    36 只
    ¦
    白兔
    比灰兔少 20%
    等量关系式:灰兔的只数 – 白兔比灰兔少的只数 = 白兔的只数
    解答:设灰兔有x只。 x - 20%x = 36
    0.8x = 36
    x = 45
    答:灰兔有 45 只。
    检验:45 – 45 × 20% = 36 或 (45 – 36)÷ 45 =20%,符合题意。
    例 5、(列方程解决“已知比一个数多百分之几的数是多少,求这个数”的百分数实际问题)
    白兔有 48 只,比灰兔多 20%。灰兔有多少只?
    分析与解:白兔比灰兔多 20%,把灰兔看作单位“1”。
    ?只
    灰兔
    ¦比灰兔多 20%
    ¦
    白兔
    48 只
    等量关系式:灰兔的只数 + 白兔比灰兔多的只数 = 白兔的只数
    解答:设灰兔有x只。 x + 20%x = 48
    1.2x = 48
    x = 40
    答:灰兔有 40 只。
    检验:40 + 40 × 20% = 48 或 (48 – 40)÷ 40 =20%,符合题意。
    点评:和前面例题一样,都是去求单位“1”的量。在解题时同样要注意找准单位“1”的量,看 问题求什么,确定用什么方法计算。
    例 6、(难点突破)
    某商品如果按现价 18 元出售,则亏了 25%,原来成本是多少元?如果想盈利 25%,应按多少 元出售该商品?
    分析与解:不管是亏 25%,还是盈利 25%,单位“1”都是这件商品的成本。所以要先求这件 商品的成本。18 元亏 25%,说明 18 元比成本少 25%,即是成本的(1 - 25%)。盈 利 25%,说明盈利的是原来成本的 25%,实际售价是原来成本的(1 + 25%)。
    解答:设原来成本是x元。 x - 25%x = 18
    0.75x = 18
    x = 24
    24 × (1 + 25%) = 30(元)
    答:原来成本是 24 元,应按 30 元出售该商品。
    点评:通常情况下,商品的盈利和亏损都是以成本作单位“1”的 。解答这道题目的关键是确定好 单位“1”,这也是解百分数应用题时最重要的。
    例 7、(考点透视)
    水果批发部要运进一批水果,第一次运进总量的 22%,第二次运进 1.5 吨,两次共运进这批水 果的 62%,这批水果一共有多少吨?
    分析与解:根据题意可以画出下面的线段图:
    62%
    第一次 22%1.5 吨
    “1”? 吨
    从图中可以看出:两次一共运的吨数 -第一次运的吨数 = 1.5 吨,单位“1”的量是这批水果 的总吨数,设这批水果一共有x吨,那么两次一共运了 62%x吨,第一次运进了 22%x吨。 解:设这批水果一共有x吨。
    62%x - 22%x = 1.5
    40%x = 1.5
    x = 3.75
    答:这批水果一共有 3.75 吨。
    点评:在解答稍复杂的百分数应用题时,要学会画线段图,它的好处是:使题目的条件变得简洁, 找数量关系式时更加容易、方便。画图的时候,要先找准单位“1”的量,用一根线段表示出单位“1” 的量之后,再去表示其他的量。
    模拟试题
    一、基本训练:
    1、找出下列各题中的单位“1”。
    ①男生人数占女生人数 60%。
    ②男生人数比女生人数多 20%。
    ③女生人数比男生人数少 25%。
    ④加工一批零件,已完成了 80%。
    ⑤今年的猪肉单价比去年上涨了 80%。
    2、根据所给信息,说出数量间的相等关系
    ①一条路,已修了全长的 60%
    ②一种彩电,现价比原价降低 10%
    1
    ③松树的棵数比柏树多
    3
    3、看图列式。
    用去 30%? 只
    灰兔比灰兔多 25%
    用去 ? 吨还剩 28 吨白兔
    30 只
    4、列式计算:
    (1)一个数的 75%比 30 的 25%多 1.5,求这个数。
    (2)一个数的 25%比它的 75%少 30,求这个数。
    二、解决问题:
    1、对比练习
    (1)某工厂六月份用煤 60 吨,六月份比五月份少用煤 25%,五月份用煤多少吨?
    (2)某工厂六月份用煤 60 吨,五月份比六月份多用煤 25%,五月份用煤多少吨?
    2、一张课桌比一把椅子贵 10 元,如果椅子的单价是课桌单价的 60%,课桌和椅子的单价各是 多少元?
    3、果园里的梨树和苹果树共有 360 棵,其中的苹果树的棵树是梨树的棵树的 20%。苹果树和梨 树各有多少棵?
    4、一套桌椅的价格是 78 元,其中椅子的价格是桌子的 30%。桌子和椅子的价格各是多少元?
    5、一条绳子,第一次剪去全长的 25%,第二次剪去全长的 35%,两次共剪去 6 米,这条绳子共 长多少米?
    6、一条绳子,第一次剪去全长的 25%,第二次剪去全长的 35%,第二次比第一次多剪了 1 米, 这条绳子长多少米?
    7、根据问题列式。
    平山茶场去年原计划种茶 20 公顷,实际种茶 25 公顷,?
    ①实际种茶的公顷数是原计划的百分之几?
    ②计划种茶的公顷数是实际的百分之几?
    ③实际种茶的公顷数比原计划多百分之几?
    ④计划种茶的公顷数比实际少百分之几?
    8、根据算式填条件
    果园里有苹果树 200 棵, ,梨树有多少棵?
    ①200÷20%
    ②200×20%
    ③200÷(1+20%)
    ④200÷(1-20%)
    ⑤200×(1-20%)
    ⑥200×(1+20%)
    (四)
    主要内容
    圆柱和圆锥的认识、圆柱的表面积
    学习目标
    1、使学生在观察、操作、交流等活动中感知和发现圆柱、圆锥的特征,知道圆柱和圆锥的底面、 侧面和高。
    2、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。
    3、使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。
    4、使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣 和学好数学的信心。
    考点分析
    1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。形成圆柱的面还有一个曲面, 叫做圆柱的侧面。
    圆柱两个底面之间的距离叫做圆柱的高。
    2、圆锥的底面是个圆,圆锥的侧面是一个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。
    3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
    4、圆柱的侧面积 = 底面周长 × 高
    5、圆柱的表面积 = 侧面积 + 底面积 × 2
    典型例题
    例 1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?
    分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面 是平面图形(圆)外,都有一个曲面。圆柱和圆锥的特征见下表。
    例 2、求下面立体图形的底面周长和底面积。
    半径 3 厘米直径 10 米
    分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。 圆柱:底面周长3.14 × 3 × 2 = 18.84(厘米)
    底面积3.14 × 3 ² = 28.26(平方厘米) 圆锥:底面周长3.14 × 10 = 31.4(米)
    底面积3.14 ×(10÷2)² = 78.5(平方米)
    点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算 公式进行计算。
    例 3、判断:圆柱和圆锥都有无数条高。 错误解法:正确 分析与解:圆柱有无数条高,圆锥只有一条高。 正确解答:错误
    圆 柱
    圆 锥
    底 面
    两个底面完全相同,都是圆 形。
    一个底面,是圆形。
    侧 面
    曲面,沿高剪开,展开后是 长方形。
    曲面,沿顶点到底面圆周上的一条线 段剪开,展开后是扇形。

    两个底面之间的距离,有无 数条。
    顶点到底面圆心的距离,只有一条。
    点评:圆柱两个底面之间的距离叫做圆柱的高。两个底面之间有无数个对应的点,圆柱有无数 条高。从圆锥的顶点到底面圆心的距离是圆锥的高。顶点和底面圆心都是唯一的点,所 以圆锥只有一条高。
    例 4、(圆柱的侧面积)体育一个圆柱,底面直径是 5 厘米,高是 12 厘米。求它的侧面积。
    分析与解:

    底面周长 沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形。这个长方形的长等于圆 柱底面的周长,宽等于圆柱的高。因此,用圆柱的底面周长乘圆柱的高就得到这个长方 形的面积,即圆柱的侧面积。
    解答: 3.14 × 5 × 12 = 188.4(平方厘米)
    答:它的侧面积是 188.4 平方厘米。
    点评:圆柱的侧面是个曲面,不能直接求出它的面积。推导出侧面积的计算公式也用到了转化 的思想。把这个曲面沿高剪开,然后平展开来,就能得到一个长方形,这个长方形的面 积就是这个圆柱的侧面积。
    例 5、(圆柱的表面积)
    做一个圆柱形油桶,底面直径是 0.6 米,高是 1 米,至少需要多少平方米铁皮?(得数保留整数)
    分析与解:求铁皮的面积,就是求圆柱形油桶的表面积,即两个底面积和一个侧面积的和。
    解答:底面积:3.14 ×(0.6÷2)² = 0.2826(平方米) 侧面积:3.14 × 0.6 × 1 = 1.884(平方米)
    表面积:0.2826 × 2 + 1.884 = 2.4492(平方米)≈ 3(平方米)
    答:至少需要铁皮 3 平方米。
    点评:这里不能用四舍五入法取近似值。因为在实际生活中使用的材料要比计算得到的结果多 一些。因此这儿保留整数,十分位上虽然是 4,但也要向个位进 1。
    例 6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是 30 厘米,高是 50 厘米。做这样一个水桶, 至少需用铁皮 6123 平方厘米。
    分析与解:题目中是做一个无盖的圆柱铁皮水桶,只有一个底面。在计算铁皮面积时只要用圆 柱的侧面积加上一个底面的面积。
    解答:底面积:3.14 ×(30÷2)² = 706.5(平方厘米)
    侧面积:3.14 × 30 × 50 = 4710(平方厘米) 表面积:706.5 + 4710 = 5416.5(平方厘米)
    答:做这样一个水桶,至少需用铁皮 5416.5 平方厘米。
    例 7、(考点透视)一个圆柱的侧面积展开是一个边长 15.7 厘米的正方形。这个圆柱的表面积 是多少平方厘米?
    分析与解:圆柱的侧面积展开是一个正方形,即圆柱的高和底面周长都是 15.7 厘米。根据圆柱 的底面周长可以算出底面积。
    解答:底面半径:15.7 ÷ 3.14 ÷ 2 = 2.5(厘米)
    底面积:3.14 × 2.5 ² = 19.625(平方厘米) 侧面积:15.7 × 15.7= 246.49(平方厘米) 表面积:19.625 × 2 + 246.49 = 285.74(平方厘米)
    答:这个圆柱的表面积是 285.74 平方厘米。
    例 8、(考点透视)一个圆柱形的游泳池,底面直径是 10 米,高是 4 米。在它的四周和底部涂 水泥,每千克水泥可涂 5 平方米,共需多少千克水泥?
    分析与解:要求水泥的质量,先要求水泥的面积。在圆柱形的游泳池的四周和底部涂水泥,涂 水泥的面积是一个底面积加上侧面积。
    解答:
    侧面积:3.14 × 10 × 4 = 125.6(平方米) 底面积:3.14 × (10 ÷ 2)² = 78.5(平方米) 涂水泥的面积:125.6 + 78.5 = 204.1(平方米) 水泥的质量:204.1 ÷ 5 = 40.82(千克)
    答:共需 40.82 千克水泥。
    例 9、(考点透视)把一个底面半径是 2 分米,长是 9 分米的圆柱形木头锯成长短不同的三小段 圆柱形木头,表面积增加了多少平方分米?
    分析与解:锯圆柱形木头,表面积增加的部分是若干个相同的底面积。锯成三段,要锯两次, 每锯一次增加两个面,锯了两次增加了四个面。
    3.14 × 2 ² × 4 = 50.24(平方分米)
    答:表面积增加了 50.24 平方分米。
    点评:这是一道在实际生活中应用的题目,对于这一类题目,它的规律就是每切一次就增加两个 面。但切的方式不同,增加的面也不同。如果是沿着底面直径把圆柱切成相同的两个部分, 增加的面就是以底面直径和高为两邻边的长方形。
    下面()图形旋转会形成圆柱。
    模拟试题
    3、在下图中,以直线为轴旋转,可以得出圆锥的是()。
    4、求下列圆柱体的侧面积
    (1)底面半径是 3 厘米,高是 4 厘米。
    (2)底面直径是 4 厘米,高是 5 厘米。
    (3)底面周长是 12.56 厘米,高是 4 厘米。
    5、求下列圆柱体的表面积
    (1)底面半径是 4 厘米,高是 6 厘米。
    (2)底面直径是 6 厘米,高是 12 厘米。
    (3)底面周长是 25.12 厘米,高是 8 厘米。
    6、用铁皮制作一个圆柱形烟囱,要求底面直径是 3 分米,高是 15 分米,制作这个烟囱至少需要铁 皮多少平方分米?(接头处不计,得数保留整平方分米)
    7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
    8、一个圆柱形蓄水池,底面周长是 25.12 米,高是 4 米,将这个蓄水池四周及底部抹上水泥。如果 每平方米要用水泥 20 千克,一共要用多少千克水泥?
    参考答案:(一)
    一、填空。
    1、篮球个数是足球的 125%,篮球比足球多( 25 )%,足球个数是篮球的( 80 )%,足球个数
    比篮球少(20 )%。
    2、排球个数比篮球多 18%,排球个数相当于篮球的(118)%。
    3、足球个数比篮球少 20%。排球个数比篮球多 18%,(排 )球个数最多,(足 )球个数最少。
    4、果园里种了 60 棵果树,其中 36 棵是苹果树。苹果树占总棵数的( 60 )%,其余的果树占总棵 数的(40 )%。
    5、女生人数占全班的百分之几 = (女生人数)÷ (全班人数) 杨树的棵数比柏树多百分之几 =( 杨树比柏树多的棵数 )÷ ( 柏树棵数 ) 实际节约了百分之几 = ( 节约的数量 )÷ ( 计划数量 ) 比计划超产了百分之几 = (超产产量)÷ (计划产量)
    6、20 的 40%是(8),36 的 10%是(3.6),50 千克的 60%是(30)千克,800 米的 25
    %是(200)米。
    7、进口价a元的一批货物,税率和运费都是货物价值的 10%,这批货物的成本是( 1.2a)元。
    二、解决实际问题
    1、白兔有 25 只,灰兔有 30 只。灰兔比白兔多百分之几?
    (30 - 25)÷ 25 = 20 %
    2、四美食盐厂上月计划生产食盐 450 吨,实际生产了 480 吨。实际比计划多生产了百分之几?
    (480 - 450)÷ 450 ≈ 6.7%
    3、小明家八月份用电 80 千瓦时,小亮家比小明家节约 10 千瓦时,小亮家比小明家八月份节约用电 百分之几?
    10 ÷ 80 = 12.5 %
    4、某化肥厂 9 月份实际生产化肥 5000 吨,比计划超产 500 吨。比计划超产百分之几?
    500 ÷ (5000 – 500) ≈ 11.1%
    5、蓝天帽业厂去年收入总额达 900 万元,按国家的税率规定,应缴纳 17%的增值税。一共要缴纳 多少万元的增值税?
    900 × 17% = 153(万元)
    6、爸爸买了一辆价值 12 万元的家用轿车。按规定需缴纳 10%的车辆购置税。爸爸买这辆车共需花 多少钱?
    方法 1:12 ×10% + 12 = 1.2 + 12 = 13.2(万元)
    方法 2:12 ×(1 + 10%) =12 ×1.1 = 13.2(万元)
    参考答案(二):
    1、李叔叔于 2000 年 1 月 1 日在银行存了活期储蓄 1000 元,如果每月的利率是 0.165%,存款三个 月时,可得到利息多少元?本金和利息一共多少元?
    税后利息:1000 × 0.165% × 3 ×(1 - 5%)= 4.7025(元)≈ 4.70(元) 本金和利息:1000 + 4.70 = 1004.70(元)
    2、叔叔今年存入银行 10 万元,定期二年,年利率 4.50% ,二年后到期,扣除利息税 5% ,得到的 利息能买一台 6000 元的电脑吗?
    税后利息:100000 × 4.50% × 2 ×(1 - 5%)= 8550(元)
    8550 > 6000
    答:得到的利息能买一台 6000 元的电脑。
    3、小华妈妈是一名光荣的中国共产党员,按党章规定,工资收入在 400-600 元的,每月党费应缴纳 工资总额的 0.5%,在 600-800 元的应缴纳 1%,在 800-1000 元的,应缴纳 1.5%,在 1000 以上的 应缴纳 2%,小华妈妈的工资为 2400 元,她这一年应缴纳党费多少元?
    2400 × 2% × 12 = 576(元)
    4、填空:
    5、只列式不计算。
    ①买一件 T 恤衫,原价 80 元,如果打八折出售是多少元?80 × 80%
    ②有一种型号的手机,原价 1000 元,现价 900 元,打几折出售? 900 ÷ 1000
    ③老师在商店里花了 56 元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售。这条牛仔裤 原价多少元? 56 ÷ 70%
    6、算出折数。
    ⑴在日常生活中打“折”现象随处可见。这儿有一家快餐店也在搞促销,你能算出这些美食分别 打几折吗?每人可任选一种计算一下。
    ①食品原价 4 元,现价 3 元。3 ÷ 4 = 0.75 = 75% = 七五折
    ②食品原价 5 元,现价 4 元。4 ÷ 5 = 0.8 = 80% = 八折
    ③食品原价 10 元,现价 7 元。7 ÷ 10 = 0.7 = 70% = 七折
    7、常熟新开了一家永乐生活电器,“十•一”节日期间,那里的商品降价幅度很大。有一种款式的 MP3, 原价 280 元,现在打三折出售。根据这个信息,你想计算什么?
    ①现价多少元? 三折 = 30%280 × 30% = 84(元)
    ②现价比原价便宜了多少元? 280 – 84 = 196(元) 改编:(1)有一种款式的 MP3,打三折出售是 84 元,原价多少元?
    84 ÷ 30% = 280(元)
    (2)有一种款式的 MP3,打三折出售比原价便宜了 196 元,原价多少元? 196 ÷ (1 - 30%)= 280(元)
    8、一种矿泉水,零售每瓶卖 2 元,生产厂家为感谢广大顾客对产品的厚爱,特开展“买四赠一”大 酬宾活动,生产厂家的做法优惠了百分之几? (注意解题策略的多样性。)
    4 ÷ (4 + 1) = 0.8 = 80%1 - 80% = 20%
    9、一辆自行车 200 元,在原价基础上打八折,小明有贵宾卡,还可以再打九折,小明买这辆车花了 多少钱?
    200 × 80% × 90% = 144(元)
    八折=(
    80)%
    九五折=(
    95)%
    40% =(
    四)折
    75% = (
    七五)折
    10、小红在书店买了两本打八折出售的书,共花了 12 元,小红买这两本书便宜了多少钱。
    12 ÷ 2 ÷ 80% = 7.5(元)7.5 × 2 – 12 = 3(元)
    或 12 ÷ 80% – 12 = 3(元)
    参考答案(三):
    一、基本训练:
    1、找出下列各题中的单位“1”。
    ①男生人数占女生人数 60%。把女生人数看作单位“1”
    ②男生人数比女生人数多 20%。 把女生人数看作单位“1”
    ③女生人数比男生人数少 25%。 把男生人数看作单位“1”
    ④加工一批零件,已完成了 80%。把一批零件看作单位“1”
    ⑤今年的猪肉单价比去年上涨了 80%。把去年的猪肉单价看作单位“1”
    2、根据所给信息,说出数量间的相等关系
    ①一条路,已修了全长的 60%全长 × 60% = 已修
    ②一种彩电,现价比原价降低 10%原价 × 10% = 降价
    原价 ×(1-10%)= 现价
    11
    ③松树的棵数比柏树多柏树 ×= 松树比柏树多的棵数
    33
    1
    柏树 ×(1+ )= 松树
    3
    3、看图列式。
    用去 30%? 只
    灰兔比灰兔多 25%
    用去 ? 吨还剩 28 吨白兔
    28 ÷(1 - 30%)×30% = 12(吨)30 只
    x + 25%x = 30
    x = 24
    4、列式计算:
    (1)一个数的 75%比 30 的 25%多 1.5,求这个数。75%x – 30 × 25% = 1.5
    x = 12
    (2)一个数的 25%比它的 75%少 30,求这个数。75%x – 25%x = 30
    x = 60
    二、解决问题:
    1、对比练习
    (1)某工厂六月份用煤 60 吨,六月份比五月份少用煤 25%,五月份用煤多少吨? 解:设五月份用煤x吨。x – 25%x = 60
    x = 80
    (2)某工厂六月份用煤 60 吨,五月份比六月份多用煤 25%,五月份用煤多少吨?
    60 + 60 × 25% = 75(吨)
    2、一张课桌比一把椅子贵 10 元,如果椅子的单价是课桌单价的 60%,课桌和椅子的单价各是 多少元?
    解:设课桌的单价是x元,椅子的单价是 60%x元。
    x – 60%x = 10
    x = 25
    25 × 60% = 15(元)或 25 – 10 = 15(元)
    答:课桌的单价是 25 元,椅子的单价是 15 元。
    3、果园里的梨树和苹果树共有 360 棵,其中的苹果树的棵树是梨树的棵树的 20%。苹果树和梨 树各有多少棵?
    解:设梨树的棵树是x棵,苹果树的棵树是 20%x棵。
    x + 20%x = 360
    x = 300
    300 × 20% = 60(棵)或 360 – 300 = 60(棵)
    答:梨树的棵树是 300 棵,苹果树的棵树是 60 棵。
    4、一套桌椅的价格是 78 元,其中椅子的价格是桌子的 30%。桌子和椅子的价格各是多少元? 解:设课桌的单价是x元,椅子的单价是 30%x元。
    x + 30%x = 78
    x = 60
    60 × 30% = 18(元)或 78 – 60 = 18(元)
    答:课桌的单价是 60 元,椅子的单价是 18 元。
    5、一条绳子,第一次剪去全长的 25%,第二次剪去全长的 35%,两次共剪去 6 米,这条绳子共 长多少米?
    解:设这条绳子共长x米。
    25%x + 35%x = 6
    x = 10
    答:这条绳子共长 10 米。
    6、一条绳子,第一次剪去全长的 25%,第二次剪去全长的 35%,第二次比第一次多剪了 1 米, 这条绳子长多少米?
    解:设这条绳子共长x米。
    35%x - 25%x = 1
    x = 10
    答:这条绳子共长 10 米。
    7、根据问题列式。
    平山茶场去年原计划种茶 20 公顷,实际种茶 25 公顷, ?
    ①实际种茶的公顷数是原计划的百分之几?25 ÷ 20 =125%
    ②计划种茶的公顷数是实际的百分之几?20 ÷ 25 =80%
    ③实际种茶的公顷数比原计划多百分之几?(25 – 20) ÷ 20 =25%
    ④计划种茶的公顷数比实际少百分之几?(25 – 20) ÷ 25 =20% 8、根据算式填条件
    果园里有苹果树 200 棵, ,梨树有多少棵?
    ①200÷20%苹果树是梨树的 20%
    ②200×20%梨树是苹果树的 20%
    ③200÷(1+20%)苹果树比梨树多 20%
    ④200÷(1-20%)苹果树比梨树少 20%
    ⑤200×(1-20%)梨树比苹果树少 20%
    ⑥200×(1+20%)梨树比苹果树多 20%
    参考答案(四):
    上图上面从左到右依次是:底面、侧面积 中间从左到右依次是:高、高 下面从左到右依次是:底面、底面周长、底面周长
    下面(A)图形旋转会形成圆柱。
    3、在下图中,以直线为轴旋转,可以得出圆锥的是(④)。
    4、求下列圆柱体的侧面积
    (1)底面半径是 3 厘米,高是 4 厘米。3.14×3×2×4 = 75.36(厘米)
    (2)底面直径是 4 厘米,高是 5 厘米。3.14×4×5 = 62.8(厘米)
    (3)底面周长是 12.56 厘米,高是 4 厘米。12.56×4 = 50.24(厘米) 5、求下列圆柱体的表面积
    (1)底面半径是 4 厘米,高是 6 厘米。
    底面积:3.14 × 4 ² = 50.24(平方厘米) 侧面积:3.14 × 4 × 2 × 6 = 150.72(平方厘米) 表面积:50.24 × 2 + 150.72 = 251.2(平方厘米)
    (2)底面直径是 6 厘米,高是 12 厘米。
    底面积:3.14 × (6÷2)² = 28.26(平方厘米) 侧面积:3.14 × 6 × 12= 226.08(平方厘米) 表面积:28.26 × 2 + 226.08 = 282.6(平方厘米)
    (3)底面周长是 25.12 厘米,高是 8 厘米。 底面积:25.12 ÷ 3.14 ÷ 2 = 4(厘米)
    3.14 × 4 ² = 50.24(平方厘米)
    侧面积:25.12 × 8 = 200.96(平方厘米) 表面积:50.24 × 2 + 200.96 = 301.44(平方厘米)
    6、用铁皮制作一个圆柱形烟囱,要求底面直径是 3 分米,高是 15 分米,制作这个烟囱至少需要铁 皮多少平方分米?(接头处不计,得数保留整平方分米)
    侧面积:3.14 × 3 × 15= 141.3(平方分米)≈ 142(平方分米) 7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
    解法一:选择①和④
    底面积:3.14 × (3÷2)² = 7.065(平方分米) 侧面积:9.42 × 2= 18.84(平方分米) 表面积:7.065 × 2 + 18.84 = 32.97(平方分米)
    解法二:选择②和③
    底面积:3.14 × (4÷2)² = 12.56(平方分米) 侧面积:12.56 × 5= 62.8(平方分米) 表面积:12.56 × 2 + 62.8 = 87.92(平方分米)
    8、一个圆柱形蓄水池,底面周长是 25.12 米,高是 4 米,将这个蓄水池四周及底部抹上水泥。如果 每平方米要用水泥 20 千克,一共要用多少千克水泥?
    底面积:25.12 ÷ 3.14 ÷ 2 = 4(米)
    3.14 × 4 ² = 50.24(平方米) 侧面积:25.12 × 4 = 100.48(平方米) 表面积:50.24+ 100.48 = 150.72(平方米) 水泥质量:150.72 × 20 = 3014.4 千克
    相关教案

    2020-2021学年9 总复习教案及反思: 这是一份2020-2021学年9 总复习教案及反思,共2页。教案主要包含了教学目标,教学重难点 教学重点,教学准备 课件,教学过程等内容,欢迎下载使用。

    小学数学人教版二年级下册10 总复习教学设计: 这是一份小学数学人教版二年级下册10 总复习教学设计,共6页。教案主要包含了回顾引入,复习整理,教学效果测评,拓展性学习等内容,欢迎下载使用。

    五年级上册8 总复习教学设计: 这是一份五年级上册8 总复习教学设计,文件包含总复习第一课时doc、总复习第三课时doc、总复习第二课时doc、总复习第五课时doc、总复习第四课时doc等5份教案配套教学资源,其中教案共11页, 欢迎下载使用。

    数学口算宝

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map