数学人教版16.1 二次根式获奖第2课时2课时教案
展开1.经历二次根式的性质的发现过程,体验归纳、猜想的思想方法;(重点)
2.了解并掌握二次根式的性质,会运用其进行有关计算.(重点,难点)
一、情境导入
eq \r(a2)等于什么?
我们不妨取a的一些值,如2,-2,3,-3,…分别计算出对应的eq \r(,a2)的值,看看有什么规律.
eq \r(22)=eq \r(4)=2;eq \r((-2)2)=eq \r(4)=2;
eq \r(32)=eq \r(9)=3;eq \r((-3)2)=eq \r(9)=3;…
你能概括一下eq \r(a2)的值吗?
二、合作探究
探究点一:二次根式的性质
【类型一】 利用eq \r(,a2)=|a|、(eq \r(,a))2=a进行计算
化简:
(1)(eq \r(5))2;(2)eq \r(52);(3)eq \r((-5)2);(4)(-eq \r(5))2.
解析:根据二次根式的性质进行计算即可.
解:(1)(eq \r(5))2=5;(2)eq \r(52)=5;(3)eq \r((-5)2)=5;(4)(-eq \r(5))2=5.
方法总结:利用eq \r(,a2)=|a|进行计算与化简,幂的运算法则仍然适用,同时要注意二次根式的被开方数要为非负数.
【类型二】 (eq \r(,a))2=a(a≥0)的有关应用
在实数范围内分解因式.
(1)a2-13;(2)4a2-5;(3)x4-4x2+4.
解析:由于任意一个非负数都可以写成一个数的平方的形式,利用这个即可将以上几个式子在实数范围内分解因式.
解:(1)a2-13=a2-(eq \r(13))2=(a+eq \r(13))(a-eq \r(13));
(2)4a2-5=(2a)2-(eq \r(5))2=(2a+eq \r(5))(2a-eq \r(5));
(3)x4-4x2+4=(x2-2)2=[(x+eq \r(2))(x-eq \r(2))]2=(x+eq \r(2))2(x-eq \r(2))2.
方法总结:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.这就需要把一个非负数表示成平方的形式.
探究点二:二次根式性质的综合应用
【类型一】 结合数轴利用二次根式的性质求值或化简
已知实数a,b在数轴上的位置如图所示,化简:eq \r((a+1)2)+2eq \r((b-1)2)-|a-b|.
解析:根据数轴确定a和b的取值范围,进而确定a+1、b-1和a-b的取值范围,再根据二次根式的性质和绝对值的意义化简求解.
解:从数轴上a,b的位置关系可知-2<a<-1,1<b<2,且b>a,故a+1<0,b-1>0,a-b<0.原式=|a+1|+2|b-1|-|a-b|=-(a+1)+2(b-1)+(a-b)=b-3.
方法总结:结合数轴利用二次根式的性质求值或化简,解题的关键是根据数轴判断字母的取值范围和熟练运用二次根式的性质.
【类型二】 二次根式的化简与三角形三边关系的综合
已知a、b、c是△ABC的三边长,化简eq \r((a+b+c)2)-eq \r((b+c-a)2)+eq \r((c-b-a)2).
解析:根据三角形的三边关系得出b+c>a,b+a>c.根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号合并即可.
解:∵a、b、c是△ABC的三边长,∴b+c>a,b+a>c,∴原式=|a+b+c|-|b+c-a|+|c-b-a|=a+b+c-(b+c-a)+(b+a-c)=a+b+c-b-c+a+b+a-c=3a+b-c.
方法总结:解答本题的关键是根据三角形的三边关系得出不等关系,再进行变换后,结合二次根式的性质进行化简.
【类型三】 利用分类讨论的思想对二次根式进行化简
已知x为实数时,化简eq \r(x2-2x+1)+eq \r(x2).
解析:根据eq \r(a2)=|a|,结合绝对值的性质,将x的取值范围分段进行讨论解答.
解:eq \r(x2-2x+1)+eq \r(x2)=eq \r((x-1)2)+eq \r(x2)=|x-1|+|x|.当x≤0时,x-1<0,原式=1-x+(-x)=1-2x;当0<x≤1时,x-1≤0,原式=1-x+x=1;当x>1时,x-1>0,原式=x-1+x=2x-1.
方法总结:利用二次根式的性质进行化简时,要结合具体问题,先确定出被开方数的正负,对于式子eq \r(,a2)=|a|,当a的符号无法判断时,就需要分类讨论,分类时要做到不重不漏.
【类型四】 二次根式的规律探究性问题
细心观察,认真分析下列各式,然后解答问题.
(eq \r(1))2+1=2,S1=eq \f(\r(1),2),
(eq \r(2))2+1=3,S2=eq \f(\r(2),2),
(eq \r(3))2+1=4,S3=eq \f(\r(3),2).
(1)请用含n(n是正整数)的等式表示上述变化规律;
(2)推算出OA10的长;
(3)求出Seq \\al(2,1)+Seq \\al(2,2)+Seq \\al(2,3)+…+Seq \\al(2,10)的值.
解析:利用直角三角形的面积公式,观察上述结论,会发现第n个三角形的一直角边长就是eq \r(n),另一条直角边长为1,然后利用面积公式可得.
解:(1)(eq \r(n))2+1=n+1,Sn=eq \f(\r(n),2)(n是正整数);
(2)∵OA1=eq \r(1),OA2=eq \r(2),OA3=eq \r(3),…∴OA10=eq \r(10);
(3)Seq \\al(2,1)+Seq \\al(2,2)+Seq \\al(2,3)+…+Seq \\al(2,10)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(1),2)))eq \s\up12(2)+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),2)))eq \s\up12(2)+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),2)))eq \s\up12(2)+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(10),2)))eq \s\up12(2)=eq \f(1,4)(1+2+3+…+10)=eq \f(55,4).
方法总结:解题时通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想.
探究点三:代数式的定义及简单应用
按照下列程序计算,表格内应输出的代数式是____________.
eq \x(n)→eq \x(立方)→eq \x(+n)→eq \x(÷n)→eq \x(-n)→eq \x(答案)
解析:根据程序所给的运算,用代数式表示即可,
根据程序所给的运算可得输出的代数式为eq \f(n3+n,n)-n.故答案为eq \f(n3+n,n)-n.
方法总结:根据实际问题列代数式的一般步骤:(1)认真审题,对语言或图形中所代表的意思进行仔细辨析;(2)分清语言和图形表述中各种数量的关系;(3)根据各数量间的运算关系及运算顺序写出代数式.
三、板书设计
1.二次根式的性质1:(eq \r(a))2=a(a≥0);
2.二次根式的性质2:eq \r(a2)=a(a≥0).
3.代数式的定义
用基本运算符号(基本运算符号包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式.
新的教学理念要求教师在课堂教学中注意引导学生进行探究学习,在课堂教学中,对学生探索求知作出了引导,并且鼓励学生自由发言,但在师生互动方面做得还不够,小组间的合作不够融洽,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的学习和生活.
数学八年级下册第十六章 二次根式16.1 二次根式第2课时教案: 这是一份数学八年级下册第十六章 二次根式16.1 二次根式第2课时教案,共2页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观,教学重点,教学难点等内容,欢迎下载使用。
初中16.1 二次根式第2课时教案: 这是一份初中16.1 二次根式第2课时教案,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。
初中数学人教版八年级下册16.1 二次根式一等奖教案设计: 这是一份初中数学人教版八年级下册16.1 二次根式一等奖教案设计,共5页。教案主要包含了知识与技能,过程与方法,情感态度与价值观等内容,欢迎下载使用。