年终活动
搜索
    上传资料 赚现金

    2020版高考数学(文)新创新一轮复习通用版讲义:第三章第二节 第3课时 题型研究——“函数与导数”大题常考的3类题型

    立即下载
    加入资料篮
    2020版高考数学(文)新创新一轮复习通用版讲义:第三章第二节 第3课时 题型研究——“函数与导数”大题常考的3类题型第1页
    2020版高考数学(文)新创新一轮复习通用版讲义:第三章第二节 第3课时 题型研究——“函数与导数”大题常考的3类题型第2页
    2020版高考数学(文)新创新一轮复习通用版讲义:第三章第二节 第3课时 题型研究——“函数与导数”大题常考的3类题型第3页
    还剩15页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020版高考数学(文)新创新一轮复习通用版讲义:第三章第二节 第3课时 题型研究——“函数与导数”大题常考的3类题型

    展开

    第3课时 题型研究——“函数与导数”大题常考的3类题型
    一、学前明考情——考什么、怎么考

    1.(2017·全国卷Ⅲ)已知函数f(x)=ln x+ax2+(2a+1)x.
    (1)讨论f(x)的单调性;
    (2)当a<0时,证明f(x)≤--2.
    解:(1)f(x)的定义域为(0,+∞),
    f′(x)=+2ax+2a+1=.
    若a≥0,则当x∈(0,+∞)时,f′(x)>0,
    故f(x)在(0,+∞)上单调递增.
    若a<0,则当x∈时,f′(x)>0;
    当x∈时,f′(x)<0.
    故f(x)在上单调递增,在上单调递减.
    (2)证明:由(1)知,当a<0时,f(x)在x=-处取得最大值,最大值为f=ln-1-.
    所以f(x)≤--2等价于ln-1-≤--2,即ln++1≤0.
    设g(x)=ln x-x+1,则g′(x)=-1.
    当x∈(0,1)时,g′(x)>0;当x∈(1,+∞)时,g′(x)<0.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
    故当x=1时,g(x)取得最大值,最大值为g(1)=0.
    所以当x>0时,g(x)≤0.
    从而当a<0时,ln++1≤0,
    即f(x)≤--2.
    2.(2018·全国卷Ⅱ)已知函数f(x)=x3-a(x2+x+1).
    (1)若a=3,求f(x)的单调区间;
    (2)证明:f(x)只有一个零点.
    解:(1)当a=3时,f(x)=x3-3x2-3x-3,
    f′(x)=x2-6x-3.
    令f′(x)=0,解得x=3-2或x=3+2.
    当x∈(-∞,3-2)∪(3+2,+∞)时,f′(x)>0;
    当x∈(3-2,3+2)时,f′(x)0,
    所以f(x)=0等价于-3a=0.
    设g(x)=-3a,
    则g′(x)=≥0,
    仅当x=0时,g′(x)=0,
    所以g(x)在(-∞,+∞)上单调递增.
    故g(x)至多有一个零点,从而f(x)至多有一个零点.
    又f(3a-1)=-6a2+2a-=-62-0,
    故f(x)有一个零点.
    综上,f(x)只有一个零点.
    3.(2018·全国卷Ⅰ)已知函数f(x)=aex-ln x-1.
    (1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;
    (2)证明:当a≥时,f(x)≥0.
    解:(1)f(x)的定义域为(0,+∞),f′(x)=aex-.
    由题设知,f′(2)=0,所以a=.
    从而f(x)=ex-ln x-1,f′(x)=ex-.
    可知f′(x)在(0,+∞)上单调递增,又f′(2)=0,
    所以当01时,求f(x)的单调区间.
    [解] f′(x)=·x+ln x-k-1=ln x-k,
    ①当k≤0时,因为x>1,所以f′(x)=ln x-k>0,
    所以函数f(x)的单调递增区间是(1,+∞),无单调递减区间.
    ②当k>0时,令ln x-k=0,解得x=ek,
    当10时,函数f(x)的单调递减区间是(1,ek),单调递增区间是(ek,+∞).
    [方法技巧]
    利用导数求函数单调区间的方法
    (1)当导函数不等式可解时,解不等式f′(x)>0或f′(x)0,所以2x-a>0,
    令f′(x)0,当x∈时,f′(x)0,所以f(x)的单调递减区间为.
    综上所述,当a≤0时,f(x)的单调递减区间为(0,e);当00),
    ①当a0恒成立,
    ∴函数f(x)在(0,+∞)上单调递增.
    ②当a>0时,由f′(x)=>0,得x>;
    由f′(x)=0,得x>,令f′(x)1,由g′(x)1,
    则g′(x)=-x+1-k=.
    ∵x>1,令h(x)=-x2+(1-k)x+1,
    h(x)的对称轴为x=,
    ①当≤1,即k≥-1时,易知h(x)在(1,x0)上单调递减,
    ∴h(x)g(1)=0恒成立,符合题意.
    ②当>1,即kh(1)=1-k>0,∴g′(x)>0,
    ∴g(x)在(1,x0)上单调递增,∴g(x)>g(1)=0恒成立,符合题意.
    综上,k的取值范围是(-∞,1).
    [课时跟踪检测]
    1.设函数f(x)=(1-x2)ex.
    (1)讨论f(x)的单调性;
    (2)当x≥0时,f(x)≤ax+1,求实数a的取值范围.
    解:(1)f′(x)=(1-2x-x2)ex,
    令f′(x)=0,得x=-1±,
    当x∈(-∞,-1-)时,f′(x)0;
    当x∈(-1+,+∞)时,f′(x)-1⇔2a>x2-ex,
    由条件知,2a>x2-ex对∀x≥1恒成立.
    令g(x)=x2-ex,h(x)=g′(x)=2x-ex,∴h′(x)=2-ex.
    当x∈[1,+∞)时,h′(x)=2-ex≤2-e,即实数a的取值范围是.
    4.(2019·广西柳州模拟)已知a为实数,函数f(x)=aln x+x2-4x.
    (1)若x=3是函数f(x)的一个极值点,求实数a的取值;
    (2)设g(x)=(a-2)x,若∃x0∈,使得f(x0)≤g(x0)成立,求实数a的取值范围.
    解:(1)函数f(x)的定义域为(0,+∞),
    f′(x)=+2x-4=.
    ∵x=3是函数f(x)的一个极值点,
    ∴f′(3)=0,解得a=-6.
    经检验a=-6时,x=3是函数f(x)的一个极小值点,符合题意,∴a=-6.
    (2)由f(x0)≤g(x0),得(x0-ln x0)a≥x-2x0,
    记F(x)=x-ln x(x>0),∴F′(x)=(x>0),
    ∴当00,∴a≥.
    记G(x)=,x∈,
    ∴G′(x)==.
    ∵x∈,∴2-2ln x=2(1-ln x)≥0,
    ∴x-2ln x+2>0,
    ∴x∈时,G′(x)0,G(x)单调递增.
    ∴G(x)min=G(1)=-1,∴a≥G(x)min=-1.
    故实数a的取值范围为[-1,+∞).
    5.(2019·武汉调研)已知函数f(x)=ln x+,a∈R.
    (1)讨论函数f(x)的单调性;
    (2)当a>0时,证明f(x)≥.
    解:(1)f′(x)=-=(x>0).
    当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.
    当a>0时,若x>a,则f′(x)>0,函数f(x)在(a,+∞)上单调递增;
    若02a.
    解:(1)f′(x)=x-=(x>0).
    当x∈(0,a)时,f′(x)0,f(x)单调递增.
    当x=a时,f(x)取最小值f(a)=a2-a2ln a.
    令a2-a2ln a≥0,解得0

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map